Lecture 8

Connectedness & Path-connectedness

R ~ "connected"
(-0,1) U (2,0) ~ "sibconnected"
X → ξ±1ζ is connected if every continuous map X → ξ±1ζ is constant.
X → ξ±1ζ is connected if and only if the only open and closed subsets of X are X and φ.
If X is connected than \$\overline{2}\$ two disjoint open sets
A iB (ANB = \$) wf A, B ≠ \$\$\$\$ or \$\$\$. X = AUB.
A subset A < X is connected if it is connected

The Def(1) and Def2. <u>Prof</u> Suppose X is connected w.rt. Def I. Suppose Def(2)

in the subspace topology.

doen't hold
$$\Rightarrow$$
 \exists $X_0 \subset X$ which is both open
and closed in X , $X_0 \neq X$, \oiint .
define $f: X \longrightarrow {\ddagger 1}{}$ by $f_{|_{X_0}} = -1$
and $f_{|_{X_1 \setminus X_0}} = \pm 1$. f is not constant and is continuous
 $f^{-1}({\ddagger 1}{)} = X$
 \Rightarrow $Def(i) \Rightarrow (Def 2)$.
Assume def 2. and let
 $f: X \longrightarrow {\ddagger 1}{}$ be continuous.
 $f^{-1}({\ddagger 1}{)} = X \land o$
 $f f$ were not constant then
 $f^{-1}({\ddagger 1}{)} = X \setminus X \land o$
 $f f$ were not constant then
 $f^{-1}(-1) \mod f^{-1}(1)$ would be non-empty open
and closed is automation.
 f must be constant.

Rem:- X is connected if every cont. map X- 30,13 is constant. We're using the fact that we have discrete topology on 30,13.

$$\underbrace{\text{Ex. }}_{R} i \text{ is connected}, \underbrace{\text{open in}}_{s} \underbrace{\text{open in$$

3) I is an interval in
$$\mathbb{R}$$
. I is connected.
Purif f: I - $\{\pm 1\}$ continuous & non-constant
then let $f(x) = 1$, $x, y \in I$. Let $x \leq c < y$
 $f(y) = -1$

f(c) = 0 by the Intermediate value the but that is not possible. \Rightarrow f must be constant = D only interval I of R is connected.

4)
$$(i) \subset IR$$
 is not connected.
 $i \in IR$, $g \in IR$ $i \in IR$ (I)
 $($

The only connected subsets of @ are singletons.

Any maximal connected subset of a space X is called a connected component: X A B

connected.

Prop. Any two connected components
$$A, B \in X$$

are either identical on disjoint.
Boot H $A = B$ then wire done. If not, let's assume
that $A \cap B \neq \Phi$. We claim :- $A \cup B$ is connected.
f: $A \cup B \rightarrow S \pm 1 \Xi$ is continuous.
=1 f_{1A} must be constant
 f_{1B} must be constant
 f_{1B} must be constant
 $f_{1A \cup B}$ is also constant.
 $A \cup B = \Phi$.
 $A \cup B = \Phi$.

Theorem :-

(1) X is a topological space. Let A and B be connected subsets of X o.t. ANB ≠ \$\$. Then AUB is connected.
ii) A be a connected subset of X. Let ACBCA.

Then B is connected.

iii)
$$A_i S_{i \in I}$$
 be a collection of connected subsets
of X w [the property that $F_i, j \in I$, $A_i \cap A_j \neq \phi$.
Then $A = \bigcup A_i$ is connected.
if I

Proof:-ii) Duppose $A \subset B \subset \overline{A}$, let $f: B \to \overline{S} \pm 1\overline{2}$ be continuous. f_{IA} must be constant as A is conneted, so let $f_{IA} = 1$. Let $b \in B$, $\overline{S} f(b)\overline{S}$ is an open set in $\underline{S} \pm 1\overline{S}$ \exists an open set U = b $s+f(U) \subset \overline{S} f(b)\overline{S}$ $b \in B \subset \overline{A} \Rightarrow b$ is a cluster point / limit point of $A \Rightarrow \exists a \in A \cap U$. $= b + f(a) \in \overline{S} f(b)\overline{S}$ or f(b) = f(a) = 1. $= f(a) \in \overline{S} f(b)\overline{S}$ or B = 1. = b = B is connected.

Corr: Closure of a connected set is connected set.

$$\frac{\text{Theorem}}{\text{f: }A \rightarrow B} \text{ is continuous of A connected =>} if $f: A \rightarrow B$ is continuous of A connected =>
 $f(A)$ is connected in B.
Proof- $g: f(A) \rightarrow \tilde{S} \pm 1\tilde{S}$ continuous.
 $h: A \rightarrow \tilde{S} \pm 1\tilde{S}$ continuous much be
constant
 $g \circ h : A \rightarrow \tilde{S} \pm 1\tilde{S}$ must be constant
=> $g \text{ much be constant on } f(A)$
=> $f(A)$ is connected.$$

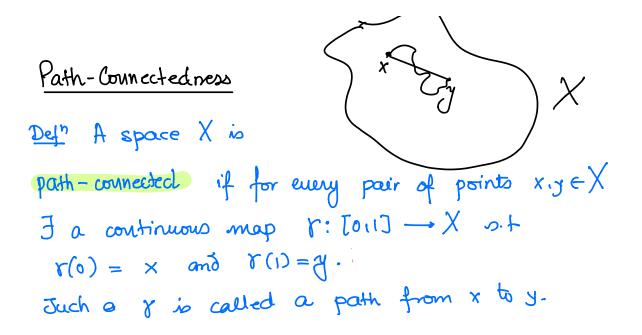
Remark: In order to show that a set is disconnect--ed. it sufficises to produce a continuous function from that set to SIIS which is non-constant.

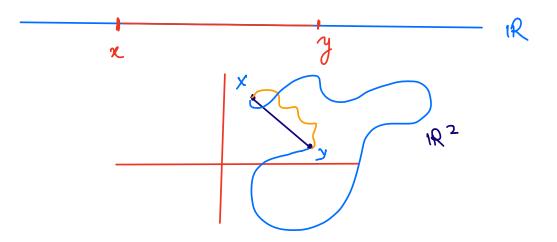
Examples:
D GL(2,R) =
$$\begin{bmatrix} a,b \end{bmatrix} & ad-bc \neq 0 \\ \end{bmatrix}$$

is not connected.
f: GL(2,R) \longrightarrow $\begin{bmatrix} \pm 1 \\ 5 \end{bmatrix}$ not constant, continuous.
f = det: GL(2,R) \longrightarrow $\begin{bmatrix} \pm 1 \\ 5 \end{bmatrix}$ is a continuous.

function as it is the composition of continuous operations of multiplication it substraction. elet: is not a constant function on GL(211R) => GL(21R) is obliscommetted. a) $O(n_1R) = \{A \in M_n(R) \mid det(A) = \pm 1\}$ is discommetted. 3) S^1 , circle in R^2 $\int_{1}^{11} (x_1y_2) \in R^2 | x^2y_2^2 = 1\}$ f: $R^2 - R$ (x_1y_2) to $x^2 + y^2 - 1$ continuous image of a connected set is connected.

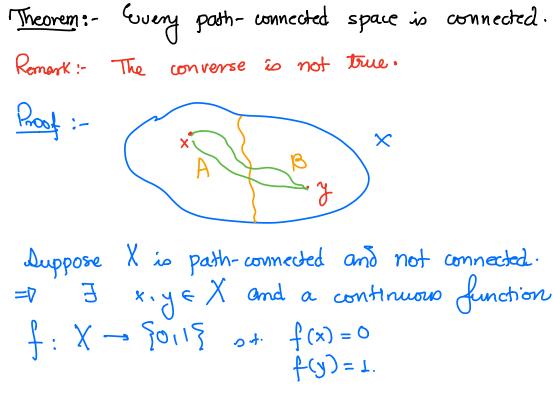
ii)
$$S^n$$
 is connected.
Hemispheres A , B are
cosmected, $A \cap B \neq \phi$
and $S^n = A \cup B$.
 $= 0$ S^n is connected.





Any maximal path-connected subset of X is called a path-component. A subset A CX is path-connected if it is so

in the subspace topology, i.e. & a be A 3 exist a path joining a and b which lies completely in A.



": X is path-connected => \exists continuous map \forall : $[0,1] \rightarrow X$ st $\forall (0) = X$, $\forall (0) = Y$. g = foY: $[0,1] \rightarrow [0,1] \Rightarrow [0,1] \Rightarrow [0,1]$ g(0)=0online g(0)=1

which can't be true as [0,1] is connected.

The converse of above theorem is NOT true. Topologist's sine curve is a counter-example $A = \left\{ (x, \sin(\pi/x) \mid 0 < x \le i \ U B = \left\{ loiy \right\} \right\}^{-i \le y \le i \ X}$

