Lecture 4

Preall :-
$$(X,T)$$
 is a topological space if $T \subseteq P(X)$
and satisfy the following:-
i) $X, \varphi \in T$
i) $\{U_i\}_{i\in T} \in T \Rightarrow \bigcup_{i\in T} U_i \in T.$ (Arbitrary union
of open sets is an open set).
iii) $U_1, U_2, ..., U_n \in T \Rightarrow \bigcap_{i=1} U_i \in T.$ (finite inter-
-section of open sets is an open set.)
elements of T are called open sets.
 $\rightarrow A \subset (X,T)$ is closed set if $A^c = X \setminus A \in T$.
 $\Rightarrow f: (X,T_X) \longrightarrow (Y,T_Y)$ is continuous if
 $U \in T_Y, S^{-1}(U) \in T_X$.
 $f is continuous if U closed set V in Y$
 $f^{-1}(V)$ is closed in X.
 $\Rightarrow x_n \rightarrow x \in X$ if $V \subseteq T_X, x \in U = T = HT$
 $\Rightarrow t \in T = n, x_m \in U$.

Examples i) $T = \{X, \phi\}$ is a topology on X. Trivial topology on X. ii) X = {a, b, c } $T_1 = \{X, \phi\}, T_2 = \{X, \phi, \{a, b\}, \{b\}, \}$ {b, c } T3 = E every coubset of X { $T_{4} = \{\chi, \overline{g}, \{a, b\}, \{c\}\}$ non-example $T_{i} = \{x, \Phi, \{q\}, \{b\}\}$ NOT topologies $T_2 = \frac{5}{2} \times (\Phi, \frac{5}{2} + 1), \frac{5}{2} + \frac{5}{2} +$ Det (X,T) topological space BCT subcollection (every element of B is an openset). 1. Bisabapis for T if every open set UE T is a union of sets in B, i.e. $U = (U_{\alpha}, U_{\alpha} \in \mathfrak{S}).$

2. B is a subbasis for T is every open set U is a union of finite intersections of sets in

$$\begin{split} \mathfrak{G}_{,i:e,} \\ \mathcal{U} &= \bigcup \, \mathcal{U}_{a} \quad \text{where} \\ &\quad d \in \mathbf{I} \\ \mathcal{U}_{a} &= \bigcup_{a}^{1} \cap \bigcup_{a}^{2} \cap \cdots \cap \bigcup_{a}^{n} , \quad \{\bigcup_{a}^{i}\}_{i=}^{n} \in \mathfrak{B} . \end{split}$$

Covery basis is a subbasis. $\underbrace{\operatorname{Ex.contd.}}_{(\mathrm{IR.1.1})}$ basis B = $\left\{ (a_1b) \right\} - o \in a < b \leq o \\ \left\{ o \\ bubbasis B = \left\{ (a_1b) \right\} - o \in a < b \leq o \\ \left\{ o \\ bubbasis B = \left\{ (a_1b) \right\} - o \\ \left\{ a \in \mathrm{IR} \right\} \cup \left\{ (a_1c) \\ \left\{ a \\ B' \right\} \right\} \right\}$ B' is NOT a basis for usual topology on R. (Check).

Defn
$$(X, T)$$
 is metrizable if T is the topology
induced by a metric.
Not every top. space is metrizable.
Proposition: -• A sequence $x_n \in X$ has a unique
limit if (X, T) is metrizable.
Proof:- Hausdorff spaces $x_1, x_2 \in X$
then \exists open sets $U, V \in T$ s.t. $x_1 \in U$,
 $x_2 \in V$ and $U \cap V = \Phi$.

Suppose $x_n \rightarrow x_1$
 $x_2 \notin x_2$
 x_3
 x_4
 x_5
 x_5
 x_5
 x_6
 x_7
 x_7
 $x_1 \neq x_2$
 x_7
 x_7
 $x_1 \neq x_2$
 x_7
 x_7

contradiction $\Longrightarrow X_1 = X_2$.

Ø

X I, I2 are topologies on X.

 $T_1 \subset T_2$ is every open set in (X, T_1) is also an open set in (X, T_2) . In this case, use say T_2 is stronger/finer topology than T_1 and T_1 . is useaker/coarses topology than T_2 .

Remark :- (1) trivial topology is weakest on X
(1) discrete topology is altrongest on X.
(R, 1.1) usual topology = R, eafinite topology
L = P R-U =
$$\frac{2}{2}$$
 × ×n $\frac{2}{2}$
Open in usual but
not in cofinite: $\frac{1}{2}$ ($\frac{1}{2}$) ($\frac{1}{2}$) ($\frac{1}{2}$) ($\frac{1}{2}$)
Given T and Tz on X they might SOT bes
Comparable.
(R, usual) NOT comparable (R, cocountable topology)
Check! J R|U is
countable.
(R, usual) NOT comparable. (R, cocountable topology)
Check! J R|U is
countable.
Subspace flopology, Roduct flopology (Bon topology)
- Quartert tupology.
Nubspace flopology
(X, T) is a topological space. A CX. The
subspace topology on A is B - basis for X
 $T_A = \frac{2}{2}$ Un A | $U \in \mathbb{B}$ basis for (A, TA).

* A ~ X inclusion map. Dubspace topology on A is the weakest topology on A st i is a continuous map.

Every Dubspace of a metrizable space is metrizable.

$$\frac{\operatorname{Broduct} \operatorname{Topology}}{(X_1, T_1) \operatorname{end} (X_2, T_2)} \text{ are topological spaces.}$$

$$\operatorname{The product topology} \operatorname{T} \operatorname{on} X_1 \times X_2 \text{ is}$$

$$\operatorname{T} = \underbrace{\underbrace{\underbrace{}} U \times U | U \in T_1, V \in T_2 \underbrace{\underbrace{}}.$$

$$\operatorname{basis} \underbrace{\underbrace{}} \operatorname{tor} (X_1 \times X_2, T_1) \text{ is}$$

$$\operatorname{D} = \underbrace{\underbrace{} U \times V | U \in B_1, V \in B_2 \underbrace{\underbrace{}}.$$

$$\operatorname{TI_1} : X_1 \times X_2 \longrightarrow X_1 (X_1, X_2) \xrightarrow{\operatorname{TI_1}} X_1 \operatorname{projections} \\ \operatorname{T}_{\operatorname{R}} : X_1 \times X_2 \longrightarrow X_2 (X_1, X_2) \xrightarrow{\operatorname{TI_2}} X_2 \operatorname{maps}.$$

$$\operatorname{T} \operatorname{is} \operatorname{tra} \operatorname{weakust} \operatorname{topology} \operatorname{on} X_1 \times X_2 \operatorname{s.tr} \\ \operatorname{TI_1} \operatorname{ons} \operatorname{TI_2} \operatorname{ore} \operatorname{continuous}.$$

