Lecture Z

* Pret 1 has been posted on the course webpage and moodle. Due Date :- 27/04/2021 at 3:15 PM.

* Problem session today ~ open office hour.

$$\frac{d_{emme}}{d_{E}} := (\mathbb{R}^{n}, d_{E}) \cong (\mathbb{B}_{g}(0), d_{E}).$$

$$(\text{onr:- All open balls in } (\mathbb{R}^{n}, d_{E}) \text{ are homeomorphics}$$

$$\text{ts each other and } = \text{to } (\mathbb{R}^{n}, d_{E}).$$

$$f : \mathbb{B}_{r}(0) = \mathbb{R}^{n} \qquad \text{bijective}$$

$$\chi := \mathbb{P} \xrightarrow{\chi} \qquad \text{continuous}$$

$$f^{-1} = g : \mathbb{R}^{n} \longrightarrow \mathbb{B}_{r}(0) \qquad \text{continuous}.$$

Boundedness is NOIT a topological property.

$$\frac{Compactness}{Suppose} \quad I \text{ is an index set}.$$
A collection $\{ \forall d \}_{d \in I}$ of open sets of X ($\forall d \in X$
 $\forall \alpha \in I$) is an open cover of $A = X$ if
 $A = \bigcup \forall_{\alpha}$
 $\alpha \in I.$
Remark This defn makes sense for arbitrary

"topological spaces". $\frac{((2))((1))}{(2)}$ R -1

Defⁿ A subset A C(X,d) is compact if either of the equivalent condition holds:-

(a) Every open cover
$$\{ \forall \alpha \}_{\alpha \in I}$$
 of A has a
finite subcover, i.e. there is a finite subset
 $\{ \forall_1, \forall_2, ..., \forall_n \} \subset I$ so t
 $A \subset \bigcup \forall_{\alpha_i}$.
 $i=1$

(b) Every sequence $z_n \in A$ has a convergent subsequent -ce w/ limit in A. $S^n \in \mathbb{R}^{n+1}$ is compact in \mathbb{R}^{n+1} . <u>Theorem</u>:- Compactness is a topological property, i.e. $f: X \longrightarrow Y$ is continuous and suppose $A \subset X$ is compact then so is $f(A) \subset Y$. <u>Proof</u> $A \subset X$ is compact. Want:- $f(A) \subset Y$ is compact. Let $\{V_{\alpha}\}_{\alpha \in T}$ be an open cover for f(A). $f(A) \subset \bigcup V_{\alpha}$ $\alpha \in T$.

hook at
$$f^{-1}(V_{\alpha}) - open$$
 in X as fis continuous.

$$\begin{cases} f^{-1}(V_{\alpha}) \\ \alpha \in I & \text{is an open cover for } A \\ = D & f(A_1, \alpha_2, \dots, \alpha_n) \subset I & \text{ot} \\ A \subset \bigcup_{i=1}^{n} f^{-1}(V_{\alpha_i}). \end{cases}$$

$$= D \quad f(A) \subset \bigcup_{i=1}^{n} V_{\alpha_i} \quad \blacksquare$$

Topological spaces

$$\frac{\partial e^{1}}{\partial e^{1}} = X \text{ is a metric (or httpological) space.}$$
(a) interior of a clubset $A \subset X$ is the set
$$A = \{x \in A \mid \exists a \text{ nbd} \cup of x \text{ is } X \text{ us/} \cup C A \{z \in A \} \}$$

$$U \subset A \{z \in A \}$$

$$O \text{ not a clubter point.}$$

(b) closure of
$$A \subset X$$
 is the set
 $\overline{A} = \{ x \in X \mid \text{ energy node of } x \text{ in } X \text{ intersector } A \}$
 $x \in \overline{A}$ is called a cluster point.

$$\frac{\text{Sxer}:}{A} = \bigcup_{\text{CX}} U$$

$$A \subset X$$

$$A \subset X$$

$$A \subseteq X$$

$$A = \bigcup_{\text{CX}} U$$

$$V \subset X \text{ open and } U \subset A.$$

À is the smallest closed subset of X that contains A rive.

Note: - Arbitrary union of open sets is open in a metric space.

Def.: - Elements of T (subsets of X) are called Opensets in X.

o------x -

_____× _____ð