Lecture 28

Recall:-Relative homology (X,A), ACX ~ pair of spaces f: (X,A) - (Y,B) map of pair. $f(A) \subset B$. f, g map of pairs. ~ homotopic if J (\$(K)→(A,X): (.,2)H Isz V .1.2 L - X x I: H is a map of pair. If $\sigma \in C_n(A;G) \longrightarrow \sigma: \Delta^n \longrightarrow A \subset X$ $\Rightarrow \sigma \in C_n(X;G)$ $= C_n(A;G) \leq C_n(X;G)$ J: Cn (X,G) - Gny (X;G) descende to the boundary O: Cn (A,G) - Cnr (A,G) =D $C_n(X, A; G) = C_n(X; G) / C_n(A; G)$ relative singular n-chain group. (C. (X, A;G), 3) relaturé singular chain complex (2²=0) Homology groups of this complex are called

prelature singular hom. gnoups of the pair (X, A). $A = \phi$ the rel. sing. hom. gp. $(X, \phi) \rightarrow absolute hom.$ gnoups.

If
$$f: (X,A) \longrightarrow (Y,B)$$
 is a map of pair there
the obsolute chasic map $f_* : G_*(X;G) \longrightarrow G_*(Y;G)$
sends $C_*(A;G)$ into $G_*(B;G) = 0$ we get a
chair map
 $f_*: C_*(X,A;G) \longrightarrow C_*(Y,B;G)$
group homomorphisms $f_*: H_n(X,A;G) \longrightarrow H_n(Y,B;G)$.
 $(f \circ g)_* = f_* \circ g_*$
 $Td: (X,A) \longrightarrow (X;A)$ is $(nd)_* = nd: H_n(X;A;G) \longrightarrow H_n(Y,B;G)$

$$C_n(X,A;G) = C_n(X;G)$$

$$\overline{C_n(A;G)}$$

crowe can view this as a n-chasic si X, i.e., as on element of $G_n(X:G)$ if $Q, b \in G_n(X:G) \sim O(b \in G_n(X, A:G))$

then Q=b eie Cn(X,A;G) c=0 Q-b e Cn(A;G)

CE Cn (X39) is called a relative cycle if the correspo-

-nding element
$$C \in C_n(X, A'; G)$$
 is acycle =)
 $\partial C = 0$ in $G_{n-1}(X; A; G) = 0$ $\partial C \in C_{n-1}(A; G)$

A relature cycle need STOT be an absolute cycle.
But an absolute cycle & always a rel. cycle.

$$\begin{bmatrix} b \end{bmatrix} = \begin{bmatrix} c \end{bmatrix}$$
 in $H_n(X,A;G) = \begin{bmatrix} T_n(X;G) \\ H_n(X;G) = \begin{bmatrix} T_n(X;G) \\ B_n(X;G) \end{bmatrix}$

$$= \begin{bmatrix} b \end{bmatrix}$$

$$= \begin{bmatrix} c \end{bmatrix}$$

$$= \begin{bmatrix} c$$

We consider the following sequence of chasic maps: $0 \longrightarrow C_*(A,G) \xrightarrow{1'_{*}} C_*(X,G) \xrightarrow{j_{*}} C_*(X,A,G) \longrightarrow 0$ - 0

is the inclusion map = 0
$$i_*$$
 is injective.
 j_* is surjective
 j_* : $C_*(X,G) \longrightarrow C_*(X,G)$ projection map = 0
 $C_*(X,G) \longrightarrow C_*(X,G)$ it is surjective.

: kerj, are all the n-chains in X which are actually n-chain in $A = in(i_{x})$

$$= 0 = C_{n-1}(A_1G_1) \xrightarrow{i_{*}} C_{n-1}(X_1G_1) \xrightarrow{j_{*}} C_{n-1}(X_1A_1G_1)$$

$$= 0 = Rer(i_{*})=0 \qquad im j_{*} = C_{n-1}(X_1A_1G_1)$$

$$= C_{n}(X_1A_2G_1) \xrightarrow{j_{*}} C_{n}(X_1G_1) \xleftarrow{i_{*}} C_{n}(A_1G_1)$$

In general, a sequence of abelian groups w/ home.
...
$$-b$$
 An-2 $\frac{f_{n-2}}{2}b$ An-1 $\frac{f_{n-1}}{2}$ An $\frac{f_{n}}{2}b$ An+1 $\frac{f_{m}}{2}b$...
is exact if $ken(f_{i+1}) = Im(f_{i})$ If 1.

The special case

$$O \longrightarrow A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \longrightarrow O$$

is called a short exact sequence. Exactness tells that f2 is surjec. J1 is inj and im (t1)= Pert2. case in (1) is called a short exact sequence of chain maps

Theorem (Shortenact requerie giver vise to long exact sequence)
hat
$$(A_*, \partial^A)$$
, (B_*, ∂^B) and (C_*, ∂^C) be chain
complexed and suppose
 $0 - 0 A_* \xrightarrow{\mathcal{S}} 0 B_* \xrightarrow{\mathcal{S}} 0 C_* \longrightarrow 0$
is a short exact sequence of chain complexed. There
 $\exists a \text{ natural homomorphism } \partial_* & H_n(C_*, \partial^C) \longrightarrow H_{n-1}(A_*\partial^A)$
 $\forall n \in \mathbb{Z} \text{ of the sequence}$
 $\dots \xrightarrow{\mathcal{S}} 0 \text{ that } (A_*, \partial^A) \xrightarrow{\mathcal{S}} 0 \text{ that} (B_*, \partial^B) \xrightarrow{\mathcal{S}} 0 \text{ that} (C_*\partial^C)$
 $\downarrow \partial_*$
 $\downarrow H_{n+1}(A_*, \partial^A) \xrightarrow{\mathcal{S}} 0 \text{ that} (B_*, \partial^B) \xrightarrow{\mathcal{S}} 0 \text{ that} (C_*\partial^C)$
 $\downarrow \partial_*$
 $\downarrow \partial_*$

=0
$$\beta^{Bb} = f(a)$$
 for some $a \in A_{n-1}$.
 a is unique $a \beta$ f is injective.
By commutativity
 $f(\beta^{A}a) = \beta^{B}(f(a)) = \beta^{B}(\beta^{B}b) = 0$
 $f(\beta^{A}a) = 0$ but f is injective = $\beta \beta^{A}a = 0$
 $= \beta \quad a \in A_{n-1}$ is indeed $a \quad cycle$.
We can now define $\beta_{A} \stackrel{\circ}{=} H_{n}(C_{\bullet}, \beta^{C}) \longrightarrow H_{n-1}(C_{\bullet}\beta^{A})$
 $\beta_{\bullet}[c] = [a] \in H_{n-1}(A_{\bullet}\beta^{A}) \longrightarrow (3)$

There were two choices involved in this procedure. I) representative of [C] = exer.) ∂_{*} is indeed independent a) $b \in g^{-1}(c)$ b) ∂_{*} is a homomorphism. b) ∂_{*} is a homomorphism. b) ∂_{*} is a homomorphism. c) ∂_{*} is a homomorphism.

Consider the poly $(X, A) = (D^{k}, S^{k-1})$ $H_{n}(D^{k}; \mathbb{Z}) \cong \int \mathbb{Z}, n=0$ D^{k} is contractible. $0 \quad n \ge 1$

The corresponding long exact sequence from the thm is : $H_n(D^k) = \{0\} = 0$ every 3^{nd} term in the 1.e.s of $(D^k, S^{k-1}, \hat{g}) \in 0$. 0 -> Hn+1 (10K, SK-1; 2) - 'de Hn (SK-1; 12) A 071 will be exact and $H_{n+1}(\mathbb{D}^{k}, \mathbb{S}^{k-1}; \mathbb{Z}) \cong H_{n}(\mathbb{S}^{k-1}; \mathbb{Z})$ $\forall n \ge 1$ 15) Black box $H_{n+1}\left(S^{k};\mathbb{Z}\right) \cong H_{n}\left(S^{k-1};\mathbb{Z}\right)$ S

