Lectuve 25 (during the problem ression)
Enamples:-

$$
\begin{aligned}
& H_{0}(y) \cong \mathbb{Z} \\
& H_{n}(y)=0 \quad \forall n \geq 2
\end{aligned}
$$

$C_{1}(k)$ is a free abelion group of romk 4

$$
\begin{gathered}
\partial_{1}\left(n_{1}\left[v_{1}, v_{0}\right]+n_{2}\left[v_{2}, v_{1}\right]+n_{3}\left[v_{3}, v_{2}\right]+n_{4}\left(\left[v_{0}, v_{3}\right]\right)\right) \\
=0 \\
n_{1}=n_{2}=n_{3}=n_{4} \\
H^{\prime}(y) \cong \mathbb{Z} .
\end{gathered}
$$

- n-th homology graup $H_{n}(x)$ elefects the "n-dimensi--onal" hotes ive X.

$H_{0}(x) \sim$ connected components of x.
$H_{0}(x) \cong \mathbb{Z}^{d}, d$ is the $\#$ of cormected components.

$$
\begin{aligned}
& H_{0}\left(s^{2}\right) \cong \mathbb{Z} \\
& H_{1}\left(s^{2}\right)=\{0\} \\
& H_{2}\left(s^{2}\right) \cong \mathbb{Z}
\end{aligned}
$$

$$
H_{1}\left(S^{n}\right)= \begin{cases}\mathbb{Z}, & i=0 \\ 0, & i=1, \ldots, n-1 \\ \mathbb{Z}, & i=n \\ 0, & i>n\end{cases}
$$

(2)

$$
H_{0}(L) \cong \mathbb{Z}
$$

a s-chain is of the form $\sum n_{i} e_{i}$

$$
\begin{aligned}
-\partial_{1}\left(n_{1}\left[v_{1}, v_{0}\right]\right. & +n_{2}\left[v_{2}, v_{1}\right]+n_{3}\left[v_{3}, v_{2}\right]+n_{4}\left[v_{0}, v_{3}\right] \\
& \left.+n_{5}\left[v_{2}, v_{0}\right]\right) \\
= & -\left[n_{1}\left(v_{1}-v_{0}\right)+n_{2}\left(v_{2}-v_{1}\right)+n_{3}\left(v_{3}-v_{2}\right)\right. \\
& \left.+n_{4}\left(v_{0}-v_{3}\right)+n_{5}\left(v_{2}-v_{0}\right)\right] \\
= & {\left[v_{0}\left(-n_{1}+n_{4}-n_{5}\right)+v_{1}\left(n_{1}-n_{2}\right)+v_{2}\left(n_{2}-n_{3}+n_{5}\right)\right.} \\
& \left.+v_{3}\left(n_{3}-n_{4}\right)\right]
\end{aligned}
$$

$$
\begin{array}{ll}
Z_{1}(L) & =\operatorname{ker}\left(\partial_{1}\right) \\
-n_{1}+n_{4}-n_{5}=0 \quad \Rightarrow \quad n_{5}=-n_{1}+n_{4} \\
n_{1}=n_{2} & \\
n_{2}-n_{3}+n_{5}=0 \quad \Rightarrow \quad n_{5}=n_{3}-n_{2} \\
n_{3}=n_{4} \quad\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) \sim(1,1,0,0,-1) \\
(0,0,1,1,1)
\end{array}
$$

\therefore The degrees of freedom are 2
$=\quad Z_{1}(L)$ is a free obelion group of rook
2. An explicit basis is

$$
\begin{gathered}
e_{1}+e_{2}-e_{5} \text { and } \begin{array}{l}
e_{3}+e_{4}+e_{5} . \\
{ }_{11} \partial_{2}\left(\sigma_{2}\right) \\
\left.\partial_{1}(L)=\sigma_{m}\right)
\end{array} \operatorname{Im}_{2} \partial_{2}: C_{2}(L) \rightarrow G_{1}(L)
\end{gathered}
$$

$H_{1}(L)=\frac{Z_{1}(L)}{B_{1}(L)}=0 \quad b / c$ the basis element boundaries of 2 -chalis.

$$
\begin{aligned}
& H_{0}(L) \cong \mathbb{Z} \\
& H_{i}(L)=0 \quad, i \geq 1 .
\end{aligned}
$$

L is a simplicial complex representation of $I B^{2}$.

$$
\begin{gathered}
\partial_{2}\left(m_{1} \sigma_{1}+m_{2} \sigma_{2}\right), \quad m_{1}, m_{2} \in \mathbb{Z} \\
0^{\prime \prime} \Leftrightarrow m_{1}=m_{2}=0
\end{gathered}
$$

- As $\operatorname{dim}(k)$ \uparrow the calculation of $H_{n}(k)$ becomes move and move tedious.

Cellular Homology \rightarrow move tractable

We say that two p-chains c and c^{\prime} are homologous if $c-c^{\prime}=\partial_{p+1} d$ for some $p+1$-chain d.
If $C=\partial_{p+1} d$ we say that c is homologous of 0 .
(3) Torus π^{2}

$$
\begin{aligned}
& \partial A=a-h-c \\
& \partial B=i-k+h \\
& \partial\left(n_{1} A+n_{2} B\right)=0
\end{aligned} \quad T \quad\left[V+F-E=\chi\left(H_{1}\right)^{2}\right)
$$

$$
\begin{aligned}
C_{0}=\operatorname{rank} 4 & \text { e.g. } \\
C_{1}=\operatorname{rank} 12 & \partial_{2} A=a-h-G \\
C_{2}=\operatorname{rank} 8 & \partial_{2} G=l+f-j \\
& \partial_{1} a=\beta-\alpha \\
Z_{0}(T) \cong C_{0} &
\end{aligned}
$$

all the generators of $C_{0}\left(Z_{0}\right)$ are homologous to each other, ie, diff. of any 2 of them is the boundary of 1-simplex.
[α] is non-zen ie Zo/Bo

$$
\therefore \quad H_{0}\left(\mathbb{\pi}^{2}\right) \cong \mathbb{Z} \quad\left(\begin{array}{r}
\text { expected as } \\
\text { connected }
\end{array} \pi^{2}\right. \text { is }
$$

Pg. the square in the lower-right hand is actually a 1-cycle b/C $\partial_{1}(i+l-c-b)=0 \quad$ is also boundayy of a

$$
\partial_{1}(i+j)=\partial_{1}(k+l)=0
$$

$$
2 \text {-simple }(C+D)
$$

when you look at the quotient of $Z_{1}(T) / B_{1}(T)$
, the elements $[i+l-c-b]$ will be 0 .
$[i+j]$ and $[k+l]$ are non-zero elements.

$$
\therefore \quad H_{1}(T) \cong \mathbb{Z} \times \mathbb{Z}
$$

for calculating:-

$$
\begin{gathered}
H_{2}(T)=Z_{2}(T) / B_{2}(T) \\
\partial(A+B+C+D+\varepsilon+F+G+H)=0 \\
Z_{2}(T) \leq C_{2}(T) \\
H_{2}\left(T^{2}\right)=Z_{2}(T) /\{0\{\cong \mathbb{Z} \\
H_{1}\left(\mathbb{\pi}^{2}\right)= \begin{cases}\mathbb{Z}, & i=0 \\
\mathbb{Z} \times \mathbb{C}, & i=1 \\
\mathbb{Z}, & i=2 \\
0, & i \geq 3\end{cases}
\end{gathered}
$$

Singular Homology

Def:- $A(\mathbb{Z}$-graded $)$ chain complex of abelian groups $\left(C_{*}, \partial\right)$ consists of sequence $\left\{C_{n}\right\}$ of obelian together of homomorphism $\partial_{n}: C_{n} \rightarrow C_{n-1}$ If $n \in \mathbb{Z}$ oft. $\partial_{n-1} \circ \partial_{n}: C_{n} \rightarrow C_{n-2}$ is the trivial homomorphism $\forall n$.

$$
\begin{gathered}
C_{*}=\bigoplus C_{n} \\
C_{*}=\left\{\sum a_{i} \mid a_{i} \in C_{n_{i}}, n_{i} \in \mathbb{Z}\right\}
\end{gathered}
$$ all but finitely many terms are zero.

$$
x \in C_{*}, \operatorname{deg}(x)=n \quad \dot{y} \quad x \in C_{n}
$$

$\partial_{n}: C_{n} \rightarrow C_{n-1} \leadsto \partial: C_{*} \longrightarrow C_{*}$ has degree -1 .

$$
\begin{aligned}
& \partial: C_{*} \longrightarrow C_{n-1} \\
& \partial^{2}=0 \text { or } \partial_{n-1} \cdot \partial_{n}=0 \quad \forall n \in \mathbb{Z} \\
& \operatorname{im}\left(\partial_{n+1}\right) \in \operatorname{ker}\left(\partial_{n}\right) \quad \partial \text {-boundary operators }
\end{aligned}
$$ elements of $\operatorname{ku}(\partial)$ ane called cycles.

. \quad "im (J) ." -.. boundaries.

