Lecture 23

Recall :-

 \mathcal{L} -abstract simplicial complex \mathcal{L} collectrois of finite non empty sets s.t. iy $A \in \mathcal{L}$ then $B \in \mathcal{L}$ for all $B \subseteq A$, $B \neq \emptyset$. $A \in \mathcal{L}$ - simplex

dim(A) = 1A1-1, any nonempty subset of A is a face of A.

vertex set U of S = union of the one-point elements of <math>S.

 $\mathcal{L} \cong \mathcal{T}$ is 3 bijective correspondence f mapping the vertex set of S to the vertex set of \mathcal{T} it $\{a_0, a_1, ..., a_n\} \in \mathcal{L}$ $\}$ $\{(a_0), f(a_1), ..., f(a_n)\} \in \mathcal{T}$.

Setn: If K is a simplicial complex, let V be the vertex set of K. Let of rettie collectrois of all collectros facilities of the vertices acomplex of the vertices acomplex of K.

It is called a vertex scheme of K.

Theorem 3-

- (a) Guery abstract complex of is isomorphic to the vertex scheme of some simplicial complex K.
- (b) Two simplicial complexes are isomorphic and their vertex schemes are isomorphic as alternact timplicial complexes.

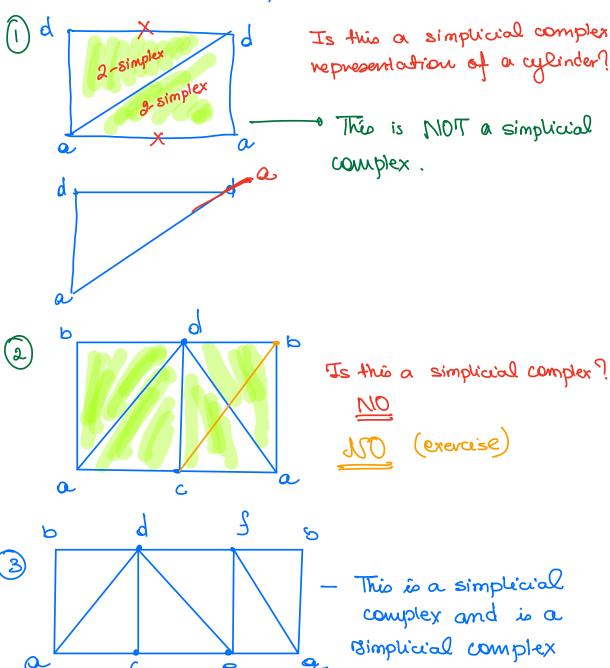
If the abstract complex $\mathcal{S} \subseteq \text{vertex scheme of } K$ then we call K a geometric realization of S.

Exambles:-

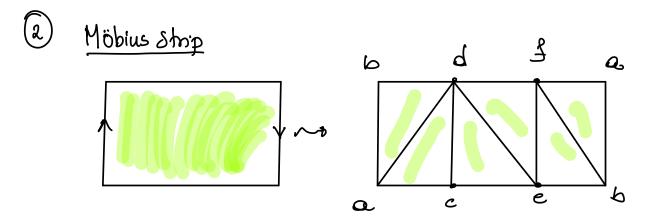
- 1) cylinder = S'x I
- · it could happen that there are more than I simplicial complex representation of a guiere space.
- · intersection of any two simplicies in K must be either empty or a face of each.
- · If a simplex has vertices & Vo,..., vn & ~ uniquely identify that n-simplex.

a 1-simplex cannot have the same end-point

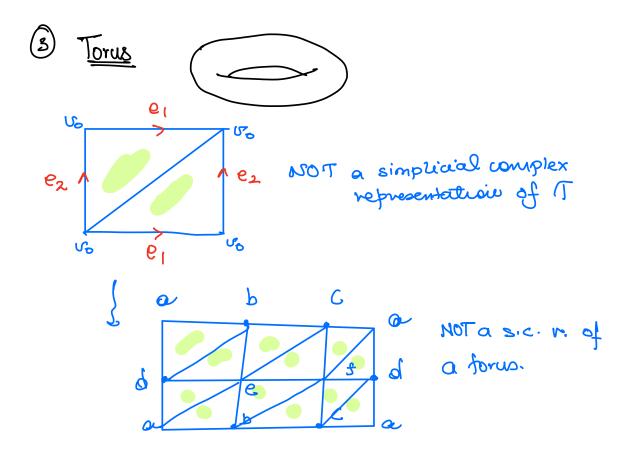
it must have a 2-simplex.

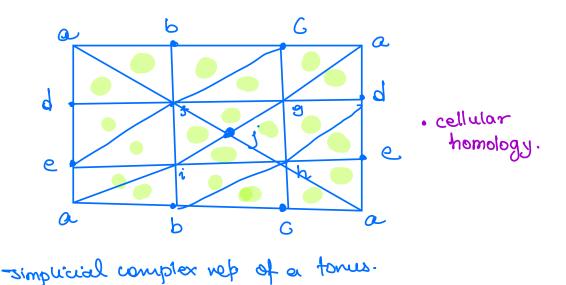


representation of the cylinder.



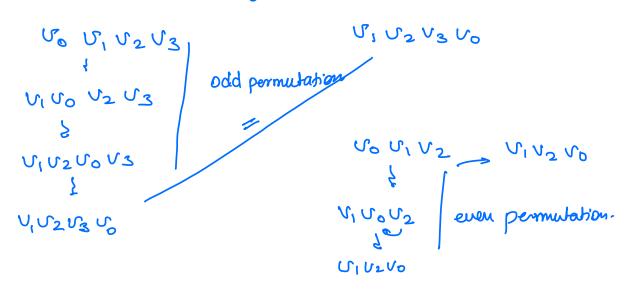
Jimplicial complex rep. of a Möbius strip.





Simplicial Homology Groups

Det n Suppose or is a simplex. We define two orderings of its vertex set to be agricularly if they differ from each other by on even permutation.



If olim $\sigma > 0$, the ordenings of the vertices of σ fall into two equivalence closes.

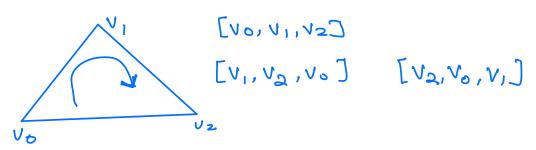
Each of these classes is called our orientation of or.

An oriented simplex is a simplex or together w/ on orientation of or.

Vo ... Un

[Vo, Vi,..., Vn] - oriented simplex or spanned by Vo,..., vn and the griner ordering.

2-simplex



[V1, V0, V2] - opposite conientation.

How the premions.

Defn Let K be a simplicial complex. A p-chain on K is a function C: Somented p-simplices in K? -> Z

- (i) $C(\sigma) = -C(\sigma')$ if σ and σ' one the same simple red on.
- (2) $c(\sigma) = 0$ for all but finitely many oriented p-simplices σ .

We add p-chain by adding their values.

The resulting group is called the group of oriented p-chains $Cp(K) = \begin{cases} 2 & \text{cit} \\ \text{cit} \end{cases}$ oriented p-simplices p-sim

-> If p<0 or p>dimk then Cp(k) = trivial group.

omesponding to T is the function, defined as:

C(a) = T

 $c(\sigma') = -1$ if σ' and σ' have opposite orientation $c(\tau) = 0$ for all other oriented β -simplex τ .

ond use the corresponding elementary chains on a basis.

D — x — z