$$\frac{|ecture 2|}{|P||ease complete the Evaluation}$$

$$\frac{|ecture 2|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
For the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on Moodle.
$$\frac{|Q|}{|P||ease complete the Evaluation}$$
for the cause on the evaluation of the e

tis are called the barycentric coordinates of X wirt. Qo Qn.

Propenties:-

1) The bargy centric coordinates ti(x) wirit ao,..., an are continuous function of X. Suppose $x_n \longrightarrow x$ $\begin{pmatrix} t_i^n \end{pmatrix} \longrightarrow (t_i)$ $\sum t_i = 1$

5) Jis n-simplex then there is a homeomorphism of or w/ the unit ball B" that comies Bdo to S^{n-1} Bdr Complexes in IR Def? A simplicial complex K in R is a collection of simplices in IRNS s.t. () Every face of a simplex of K is in K. (2) The intersection of any two simplexes of K is a face of each of them. K2

<u>Lemma</u>: - A collection K of simplices & a simplicial complex s=p the fallowing hold:) Every face of a simplex of K is in K.
d') Every pair of distinct simplices of K have disjoint interiors.
<u>Proof</u>: - Assume K is a simplicial complex.
Let T and T be two simplices K. We'll show that if X ∈ into n int T = p T = T.

Let
$$S = \sigma \cap T$$
. If s were a proper face of σ then
 $x \in Bd\sigma \longrightarrow not possible as x \in Into$
 $:= S = \sigma$
Ulmilarly $S = T = P \quad \sigma = T$.

<u>Set</u>?- If L is a coubcollection of a simplicial complex K that contains all faces of its elements then Lie a simplicial complex in its duon night. Lis called a subcomplex of K. One subcomplex of K is the collection of all simplices us K of dim at most $\beta \sim \beta$ (b)-skeleton of K and B denoted by $K^{(p)}$. The points of $K^{(0)}$ are called ventices of K.

Def :- Let |K| be the subset of IR^{NS} that is the union of the simplices of K. Giving each simplex its natural topology as a subspace of IR^{NS}, we can put a topology on IKI; we declare a subset A of |K| to be closed in IK| → A nT is closed in T IF simplex or in K.

Ikl is called the underlying space of K or the polyhope of K.

A space that is the polytope of a simplicial complex is called a polyhedren.

In general, the topology IKI is finer than the topology IKI has as a subspace of IR^W. <u>Ex:</u> K is the collection of all 1-simplices in IR

of the form
$$[m, m+1]$$
, $m \in \mathbb{Z} \setminus \{20\}$ along with
all simplices of the form $\left[\frac{1}{n+1}, \frac{1}{n}\right]$, $n \in \mathbb{N}$.

Polytope of K is R as a set but <u>not as a top</u>. <u>space</u>. R Stand is closed in [K] but not in R. ex. K = Joi, oz, ..., J oi is a 1-simplex bi oi is the 1-simplex and R² w/ ventices 0 and (1,1/i)

intersection is closed in |K| but $(J_1/2)$ |K|the intersection is not closed in the outspace (0,0) $J_{\{K,X^2\}}|_{X>0}$ top. of |K| b/c (0,0) is a limit point.

× _____ × _____