Lecture 20

- Problem Set 7 will be uploaded after the prob. session.

$$T_{n}(x) - n \text{-th fundemental group} - n \text{-th homotopy groups}$$

$$Z_{g} \notin Z_{h} \longrightarrow T_{I}(Z_{g}) \notin T_{I}(Z_{h}).$$

$$R^{1} \notin R^{n} \text{ connected nead}$$

$$R^{2} \# R^{n}, n > 2 \quad \text{fundamental group} - \text{Poincare' 1901}$$

$$R^{n} \notin R^{m}, n \neq m$$

$$Poincare' \text{ conjecture 1903}$$

$$Grig \text{ or i Perelman} \qquad 2003 \\ \downarrow \qquad \text{Ricci-flow}$$

$$Thusston's Geometrizalacie conjecture.$$

Simplicial Homology
Set Let
$$\{Q_0, ..., Q_n\}$$
 points in IR?, this set is
geometrically independent if for any $t_i^* \in IR$ the
equations n
 $\sum_{i=0}^{n} t_i^* = 0$ and $\sum_{i=0}^{n} t_i^* = 0$
 $t_i = 0$ to $= t_i = \cdots = t_n = 0$.
 $\{Q_0 S_i - Q_{00}, \ldots, Q_n - Q_{0}\}$
 $\{Q_0, \ldots, Q_n, S_i, Q_i, \dots, Q_n - Q_{0}\}$
Unearly independent.

-
$$Sao,...,anS$$
 geom. ind., we define the n-plane P
spanned by these points as the set of $x \in \mathbb{R}^n$ s.t
 $x = \sum_{i=0}^{n} t_i a_i^i$, $ti \in \mathbb{R}$ s.t $\sum_{i=1}^{n} t_i = 1$.

An affine transformation
$$T: \mathbb{R}^n \to \mathbb{R}^n$$
 which is a composition of a translation $(T(x) = x + \beta, \beta \in \mathbb{R}^n)$
tixed

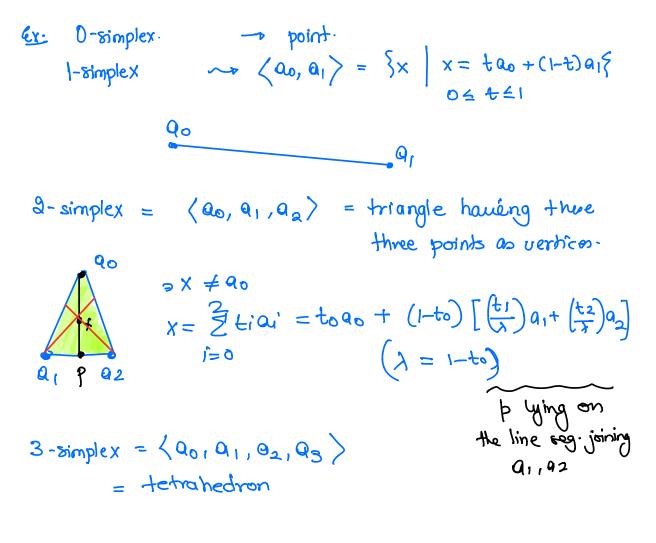
and a non-singular linear transformation.

If T is an affine trans. then T takes geom. ind. sets
to geom. ind. sets,
$$P = \langle Q_0, Q_1, ..., Q_n \rangle$$

 $T(P) = \langle TQ0, ..., TQn \rangle$.

Definition here is a geometrically independent set
with Rⁿ. We define the maximplex of spanned by

$$a_0, \ldots, a_n$$
 to be the set of all points $x \in IR^n$ oft.
 $x = \sum_{i=0}^{n} t_i a_i^n$ w/ $\sum_{i=0}^{n} t_i^i = 1$. $f_i \ge 0$ f_i^n .
The numbers t_i^n are uniquely determined by x . They
are called the barry centric coordinates of the point
 $x \in \sigma$ with a_0, \ldots, a_n .



Properties of simplices

The banguentric coordinates ti(x) of X w-r-t. as,...,an erre continuous functions of X.

interior of σ , int $\sigma = \sigma - Bd\sigma$. Gopen simplex.