Lecture 2

* Course Outline updated w/ into about problem sets submission and its advantages.

* (Recordings will be available. Metric Spaces (examples of topological spaces) Defn het X is a non-empty set. Then (X,d) is a metric space if d: X × X - R is a metric space if is a function which satisfies, & Xiy, ZE X i) $d(x,y) \ge 0$ and d(x,y) = 0X=J. ii) o(x,y) = d(y,x) (aymmetry)iii) $d(x,y) \leq d(x,z) + d(y,z)$ (Triangle inequality) disa metric on X. χ The topology generated by d is the metric topology on X. 2

Examples (\mathbf{R}, \mathbf{r}) xy $\in \mathbb{R}$ d(x,y) = |x-y|ل x $d(x,y) \leq d(x,z) + d(y,z)$ |x-y| = |x+z-z-y| $(x_{1}z) + |y_{2}z| = d(x_{1}z) + d(y_{1}z)$ (2) C, Z = x + iy, $|Z| = \sqrt{x^2 + y^2}$ Then d(z, w) = |z - w|(C, d) a metric space. $\mathbb{R}^{n}, X = (X_{1}, X_{2}, \dots, X_{n}) \in \mathbb{R}^{n}$ $\mathcal{Y} = (\mathcal{Y}_{1}, \mathcal{Y}_{2}, \dots, \mathcal{Y}_{n}) \in \mathbb{R}^{n}$ (3) $d_{1}(x,y) = \sum_{k=1}^{m} |x_{k} - y_{k}|$ $d_{\mu}(x_{1}y) = \max \{ | x_{k} - y_{k} | \}$ $d_2(x_y) = \frac{2}{|x_k - y_k|^2}$

Every IPS is a metric space where the metric comes from a norm. But the converse is NOT true. (PSet 1) (6) Discrete metric on X. $d(x,y) = \begin{cases} 0 & y & y = x \\ 1 & otherwise \end{cases}$

It is a metric on X generating the oliscrete topology on X.

Open sets f Open ballys (x,d) metric space, then an open ball of radius or, centred at xe X $B_{r}(x) = \{y \in X \mid d(x,y) < r\}$

UCX is on open set in V xell 3 E>O s.t. B(x) CU.

<u>Exercise</u> Check whether $\xi \times \xi$ is an open set or closed set or both or neither wher (X, d), of is the discrete metric.

Convergence of wequences in a metric space (X,d) and $A \subset X$ restriction of d from X to A makes (A, d) a metric space. Defn In (Xid) a sequence (Xn) in X converges to $x \in X$ if $4 \in 0$ $x_n \in B_{\mathcal{E}}(x)$ Y n sufficienty large. Sequivalently, & neighbourhood U of x Xn E U & n sufficiently large. $\lim x_n = x$ or $x_n \longrightarrow x$

(a) If
$$x_n \rightarrow x$$
 in $X \rightarrow f(x_n) \rightarrow f(x)$ in Y .
() $a \rightarrow (2)$ exercise.
(a) $a \rightarrow (2)$
 $x_n \rightarrow x$ given. Want: $f(x_n) \rightarrow f(x)$
Suppose U is a nbd of $f(x) \rightarrow 3$ = an
open set $V \subset U$ st. $f(x) \in V$
 $\Rightarrow f^{-1}(U) \supset f^{-1}(V) \Rightarrow x$.
 $f^{-1}(U)$ is a nbd of x open so we are
 $f^{-1}(U)$ is a nbd of x open so we are
 $f^{-1}(U)$ is a nbd of x open so we are
 $f^{-1}(U)$ is a nbd of x open so we are
 $f^{-1}(U)$ for n sufficiently large
 $\Rightarrow f(x_n) \in U$ " " "
 $\Rightarrow f(x_n) \rightarrow f(x)$.
(B) $\Rightarrow (2)$
We didn't use the metric at all.
(B) $\Rightarrow (2)$
 $We'll prove the contrapositive
 $\Rightarrow (2) \Rightarrow (3)$$

J an open set U in Y s.t. $f^{-1}(U)$ is not open in X. =D $\exists x \in f^{-1}(U)$ s.t. no open ball enound x is contained in $f^{-1}(U)$. =D \forall new $\exists x_n \in B_{y_n}(x)$ s.t. $x_n \notin f^{-1}(U)$.

 $x_n - x$ by the way we chose them. but $f(x_n)$ can never converge to f(x). b/c U is a nbd of f(x) and it doesn't contain any $f(x_n)$.

 $= 0 \quad f(x_n) \neq U, \quad -(i)$

<u>Homeomorphism</u> $f: X \rightarrow Y$ is a homeom--orphism if f is continuous, bijective and $f^{-1}: Y \rightarrow X$ is continuous.

Homeomorphism is an equivalence relation.

$X \subseteq Y$ $c \in X$ Consider (R^n, d_2) . Then $(B_r(x), d_2) \cong (R^n, d_2)$. Any two balls in R^n are homeomorphic. $o = -x = -x = -\infty$