Lecture 19
Recall:- $\left\{G_{\alpha}\left\{_{\alpha \in J}\right.\right.$ collection of groups
$* G_{\alpha}$ - free product of groups \rightarrow collection $\alpha \in J$ of all reduced words ire $\left\{G_{\alpha}\left\{_{\alpha \in J}\right.\right.$.
$\rightarrow S$ is a set, the free group on S

$$
F_{S}=\underset{\alpha \in S}{* \mathbb{Z}}
$$

Set of all reduced words $a_{1}^{p_{1}} a_{2}^{p_{2}} \ldots a_{n}^{p_{n}}$,

$$
n \geq 0, \quad p_{i} \in \mathbb{Z}, p_{i} \neq 0 \quad, a_{i} \in S \quad w / a_{i} \neq a_{i+1} \notin i
$$

elements of S are called generators of F_{S}.
$\rightarrow S$ is a set, a relation in S means any eq. of the form " $a=b ", a, b \in F_{S}$.

- S is a set, R is a set consisting of relations wi S, we define the group

$$
\left\{S \mid R\left\{=F_{S} /\left\langle R^{\prime}\right\rangle_{S}\right.\right.
$$

$R^{\prime} \rightarrow$ set of all elements of the form $a^{-1} b \in F_{s}$ for relation e " $a=b$ " $\sin R$.

$$
\begin{aligned}
{[w]=\left[w^{\prime}\right] \Longleftrightarrow } & w^{-1} w^{\prime} \in\left\langle R^{\prime}\right\rangle N . \\
& \text { § } \\
& w=w^{\prime \prime} \in R .
\end{aligned}
$$

$G \cong\{S \mid R\{$ - presentation of G.
If $|S|,|R|<\infty$ then G is finitely presented.

$$
\begin{aligned}
& F_{\{a\}} \cong \mathbb{Z}, \quad\left\{a \mid a^{p}=e\left\{\cong \mathbb{Z}_{p}\right.\right. \\
& \{a, b \mid a b=b a\{\cong \mathbb{Z} \times \mathbb{Z} .
\end{aligned}
$$

Fundamental group of surfaces

Weill consider polygons

$P \subset \mathbb{R}^{2}$
compact, convex region ie \mathbb{R}^{2}

Suppose P is bounded by n edges. edgen $a_{1}, a_{2}, \ldots, a_{n}$, arrows on edges.
We define a topological space

$$
X=P / \sim \text { - surface }
$$

\sim - trivial on the interior of P.
\sim on the boundary is as follows:identity all the vertices to a single point identity any pair of edges labelled by the same letter usia a homeomorphism which should match the direction of arrows.

Fact : \rightarrow All compact surfaces can be presented as a quotient of a polygon.

cylinder

even point on ∂D^{2} is being identified $w /$ its antipodal point. $\rightarrow \mathbb{R} D^{2}$

Theorem:-
Suppose $X=P / \sim$ is aspace as described above, P has n edges labelled by $a_{1}, a_{2}, \ldots, a_{n}$. listing them in the order in which they appear as the ∂P is traversed once counterclockwise.

Let G denote the set of all letters that appear in the list and $b i=\alpha, \ldots, n$ we write $P_{i}=1 \quad-$ if the arrow at edge i points counterclockwise around the boundary

$$
p_{i}=-1 \quad-\quad \longrightarrow_{\text {clockwise in }} "
$$

Then $\Pi_{1}(x)$ is isomorphic to the group $\omega /$ generators G and exactly one relation

$$
\begin{gathered}
a_{1}^{p_{1}} a_{2}^{p_{2}} \ldots a_{n}^{p_{n}}=e, \text { i.e, } \\
\pi_{1}(x) \cong\left\{G \mid a_{1}^{p_{1}} a_{2}^{p_{2}} \ldots a_{n}^{p_{n}}=1\{.\right.
\end{gathered}
$$

Proof:- Let $P^{1}=\partial P / \sim C X$. \because all vertices are identified to a point
$\Rightarrow p^{\prime}$ is homeomorphic to wedge sum of circles, one for each of the letters that appear as labels of the edge.

By the Seifert-vemkampen theorem

$$
\begin{aligned}
\pi_{1}\left(P^{\prime}\right) & \cong \Pi_{1}\left(s^{\prime}\right) * \pi_{1}\left(s^{\prime}\right) * \cdots \pi_{1}\left(s^{\prime}\right) \\
& \cong \mathbb{Z} * \mathbb{Z} * \cdots \cdot \mathbb{Z}=F_{G}
\end{aligned}
$$

decompose $X=A \cup B, A, B G_{\text {open }} X$
A = interior of p
$B=$ open nad of ρ^{\prime}
$A \cap B$ is homeomorphic to an annulus $S^{\prime} \times(-1,1)$
\Rightarrow if $p \in A \cap B, \pi_{1}(A \cap B, p) \cong \mathbb{Z}$

$$
\because A \cong D^{2} \Rightarrow \pi_{1}(A)=0
$$

B deformation retracts to P^{\prime}

$$
\left.\Rightarrow \pi_{1}(B, p) \cong \pi_{1}(p)\right) \cong F_{G} .
$$

\therefore By the van Kampen the,
$\Pi_{1}(X, B)$ is a quotient of $\Pi_{1}(A) * \pi_{1}(B)=F_{G}$.
|s|
Fa/normal stop. generated by the rel action that if $j_{A}: A \cap B<A$

$$
\begin{gathered}
j_{B}: A \cap B<B \\
\left(j_{A}\right) *[\gamma]=\left(j_{B}\right)_{*}[\gamma], \quad[\gamma] \in \pi,(A \cap B, p) \\
\\
.
\end{gathered}
$$

trivial as $\pi_{1}(A)=0$.
$\left(j_{B}\right) *[\gamma] \in \pi,(B, p)$
1 become the concatenated loop $a_{1}^{p_{1}} a_{2}^{p_{2}} \ldots a_{n}^{p_{n}} \ldots{ }^{\circ}$ the relation is
$\left(j_{B}\right)_{*}[\gamma]=e \Rightarrow$ the relation is

$$
a_{1}^{p_{1}} a_{2}^{p_{2}} \ldots a_{n}^{p_{n}}=e
$$

\Rightarrow by von Kampen theorem

$$
\begin{align*}
& \text { by von Kampen theorem } \tag{V}\\
& \pi_{1}(X)=\frac{\pi_{1}(*) * \pi_{1}(B)}{\left\{a_{1}^{p_{1}} a_{2}^{p_{2}} \cdots a_{n}^{p_{n}^{n}}=e\right\}}
\end{align*}=\left\{G \mid a_{1}^{p_{1}} \ldots a_{n}^{p_{n}}=e\{\right.
$$

Examples :-
(1) $\pi^{2} \quad \pi_{1}\left(\pi^{2}\right) \cong \mathbb{Z} \times \mathbb{Z}$

$$
G=\{a, b\}
$$

$$
\begin{aligned}
\pi_{1}\left(\pi^{2}\right) & \cong\left\{a, b \mid b^{-1} a^{-1} b a=e\right\} \\
& =\{a, b \mid a b=b a\} \\
& =\mathbb{Z} \times \mathbb{Z}
\end{aligned}
$$

(2) $\mathbb{R D}^{2} \quad \pi_{1}\left(\mathbb{R} \mathbb{P}^{2}\right) \cong \mathbb{Z}_{2}$

$$
\begin{aligned}
\pi_{1}\left(\mathbb{R} \mathbb{P}^{2}\right) & =\left\{a \mid a^{\perp} a^{\perp}=e\right\} \\
& =\left\{a \mid a^{2}=e\left\{\cong \mathbb{Z}_{2}\right.\right.
\end{aligned}
$$

S^{2}, genus $=0$

genus $=1$

genes $=2$
compact, w/0 boundary
Def:- For any integer $g \geq 0$, the closed orientable smface \sum_{g} of genus g is defined to be S^{2} if $g=0$ and otherwise $\sum_{g}=P / \sim, P$ is a polygonal $w / 4 g$ edger labelled by $2 g$ distinct letters $\left\{a_{i}, b_{i}\left\{_{i=1}^{g}\right.\right.$ eire the order

$$
a_{1}, b_{1}, a_{1}, b_{1}, a_{2}, b_{2}, a_{2} b_{2}, \ldots, a_{g}, b g, a_{g}, b g
$$

S.f. the arrows point counterclockwise on the first appearance of each better in the
sequence and clockwise on the second appearance.
e.g. π^{2} is a surface of genus 1 .

1 polygon $4.1=4$ sides
2 distich letters

Exercise:- Try to write down $\pi_{1}\left(\Sigma_{g}\right)$.
In particular, use this Description to solve Prob. on $\pi_{1}\left(\pi^{2} \# \pi^{2}\right)$.

Proof of the ven Kampen theorem
The:- Suppose $X=\bigcup_{\alpha \in J} A_{\alpha}, A_{\alpha} \underset{\text { open }}{e}$ path-connected

$$
i_{\alpha}: A_{\alpha} \longleftrightarrow X \text { and } j_{\alpha \beta}: A_{\alpha} \cap A_{\beta} \longleftrightarrow A \alpha
$$

$$
\alpha, \beta \in J . \text { let } p \in \bigcap_{A \alpha} \text {. }
$$

$$
a \in J
$$

(1) If $A a \cap A \beta$ is path-cormected if pair $\alpha, \beta \in J$ then

$$
\Phi: \underset{\alpha \in J}{ }(A \alpha, p) \longrightarrow \pi)(x, p) \text { s.t. }
$$

$\Phi_{\Pi_{1}\left(A_{\alpha}, b\right)}=\left(i_{\alpha}\right)_{*}$ is surjective.
(Already proved for the special case of the vankampen the.)
(2) If $A_{\alpha} \cap A_{\beta} \cap A_{\delta}$: path-connected
\forall triple $\alpha, \beta, \beta \in J$ then

$$
\begin{gathered}
\operatorname{ken} \Phi=\langle S\rangle_{\sigma} \text { where } \\
S=\left\{\left(j_{\alpha \beta}\right)_{*}[\gamma]\left(\omega_{\beta \alpha}\right)_{*}[\gamma]\right)^{-1} \mid \alpha, \beta \in J \\
{[\gamma] \in \Pi_{1}\left(A_{\alpha} \cap A_{\beta}, \beta\right)\{.}
\end{gathered}
$$

So, if $F=\underset{\alpha \in J}{*} \pi_{1}(A \alpha, p)$, then

$$
\pi(X \mid \phi) \cong F /\langle S\rangle_{N}
$$

Proof:- want to prove:-
$\Phi(w)=\Phi\left(w^{\prime}\right)$ for reduced words w, w^{\prime}
$\in F$. then $[\omega]=\left[\omega^{\prime}\right]$ in $F /\langle s\rangle_{N} \cdot\{$-(i) γ is a lop based at p ii X, we say
[r] can be factored ie the following sense

$$
[\gamma]=\left[\gamma_{1}\right] *\left[r_{2}\right] * \cdots\left[\gamma_{n}\right] \text { s. }
$$

$\left[r_{i}\right]$ is a loop based at p and is contained in $A_{\alpha_{i}}$.
We know that $[\gamma]$ can be factored.
Any factorization of $[\gamma] \leadsto$ reduced word $w \in F, w=\left[r_{1}\right] *\left[r_{2}\right] \ldots . \cdot\left[r_{n}\right]$.
Also $\Phi(\omega)=[\gamma]$.
Conversely, $w \in \Phi^{-1}([\gamma])$ can be realized as a factorization of $[r]$ s.t. each letter is a loop based at p and contained ere exactly are of the open sets.
\therefore showing (1) is same as this:- we need to show that any two factorizations of γ can be related to each other by a finite sequence of the following operations and their inverses.
(1) If γ_{i} and γ_{i+1} are adjacent loops, ie, $\alpha_{i}=\alpha_{i+1}$, we replace them $\omega / \gamma_{i} * \gamma_{i+1}$.
(2) replace some $\gamma_{i} w / \gamma_{j}$ sit. $\gamma_{i}=p \gamma_{i}$ in A_{α}.
(3) If $\gamma_{i} \in A_{\alpha_{i} \cap A_{\beta}}, \alpha_{i}, \beta \in J$ then we can replace $\alpha_{i} w / \beta$ i.e, ie the corresponding reduced word ie F. whenever we have
$\left(j_{\alpha_{i} \beta}\right) *\left[\gamma_{i}\right] \in J_{1}\left(A_{\alpha_{i}}, b\right)$, we can replace it $w /\left(j_{\beta \alpha_{i}}\right) *\left[\sigma_{i}\right] \in \pi_{1}\left(A_{\beta, p}\right)$.
This operation (3) changes the reduced word WEF, it won't change the eq. class $[\omega] \in F /\langle s\rangle_{W}$.
Basic idea:- create a subdivision of $I \times I$ $\omega /$ the required properties.
if $\gamma_{1} * \gamma_{2} * \cdots \cdot \gamma_{n} \simeq p \gamma_{1}^{\prime *} \gamma_{2}^{\prime *} \ldots \gamma_{n^{\prime}}^{\prime}$
$\Rightarrow \exists H: I \times I \longrightarrow X w)$

$$
\begin{aligned}
& H(0,0)=r_{1} \Delta \gamma_{2} \ldots . . r_{n} \\
& H(1, \cdot)=r_{1}^{\prime} \& \gamma_{2}^{\prime} \cdots \gamma_{n^{\prime}}^{\prime} \\
& H(\delta, 0)=H(s, 1)=p \quad \forall s \in I .
\end{aligned}
$$

create a subdivision of $I \times I$ s.

$$
[s-2 \epsilon, s+2 \epsilon] \times[t-2 \epsilon, t+2 \epsilon] \in H^{-1}(A \alpha)
$$

$\alpha \in J$.

cf. Prof. Wend's notes an the proof of the vankampen. pg. 78.

