Lecture 19

Recall :- SGa Saet collection of groups * Ga - free product of groups - collection ard of all reduced words in SGa Sare J. - S is a set, the free group on S $F_S = * \mathbb{Z}$ set of all reduced words an a2 ... an, $n \ge 0$, $p_i \in \mathbb{Z}$, $p_i \ne 0$, $q_i \in S$ w/ $q_i \ne q_{i+1} \in J_i$. elements of S are called generators of Fs. \rightarrow S is a set, a relation in S means any eqn. of the form "a = b", $a_1 b \in F_S$. - S is a set, R is a set consisting of relations in S, we define the group SIRS = FS/ZR'ZN

$$R' \rightarrow set of all elements of the form $q^{-1}b \in F_s$
for relation " $q = b'' \in R$.
 $[w] = [w'] \implies w^{-1}w' \in \langle R' \rangle_{S}$.
 $u'' w = w''' \in R$.$$

 $G \cong SSIRS - presentation of G.$ If $|S|, |R| < \infty$ then G is finitely presented. $F_{SQS} \cong \mathbb{Z}$, $Sa \mid a^{P} = eS \cong \mathbb{Z}p$ $Sa_{1b} \mid ab = baS \cong \mathbb{Z} \times \mathbb{Z}$. <u>Fundamental group of ourfaces</u> $= \infty$

We'll consider polygons p P C R² 6 compact, convex region ie R² Suppose P is bounded by nedges. edgen 91, 921..... 91, arrows on edges. We define a topological space X = P/~ - surface trivial on the interior of P. ~ on the boundary is as follows:-Identify all the vertices to a single point identify any pair of edges labelled by the same letter via a homeomorphism which shall match the direction of arrows. Fact: -> All compact surfaces can be presented as a quotient of a polygon.

every point on OD² is being identified w/ its antipodal point. ~ RP2

 \mathbf{D}^2

Theorem 8-

Duppose X = P/~ is a space as described above, P has n edges labelled by 91,921...,90. listing them in the order in which they appears as the OP is traversed once counterclockwise. Let G denote the set of all letters that appear in the list and I i= 1,..., n we write Pi=1 - if the arrow at edge i points counterclockwise around the boundary $P_{i} = -1$ Clockwise 11 Then $TT_1(X)$ is isomorphic to the group w/ generators (i and exactly one relation $Q_1^{P_1}Q_2^{P_2}\dots Q_n^{P_n} = e_{nie}$ $\pi_{I}(X) \cong \{G \mid Q_{1}^{p_{1}} a_{2}^{p_{2}} \dots a_{n}^{p_{n}} = 1 \}.$ Proof: - Let P¹ = OP/~ CX. ... all vertices are identified to a point

 $\therefore A \cong D^2 \Longrightarrow \pi_1(A) = 0$

B deformation retracts to
$$P^{1}$$

=P $\pi_{1}(B_{1}p) \cong \pi_{1}(P^{1}) \cong F_{6}$.
:. By the van Kampen thm.
 $\pi_{1}(X_{1}p)$ is a quotient of $\pi_{1}(A) * \pi_{1}(B) = F_{6}$.
III
Fa homal step: generated by the relations
that if j_{A} : An B <- A
 $j_{B}: An B <- B$
 $(j_{A})_{*}[r] = (j_{B})_{*}[r], [r] \in \pi_{1}(AnB_{1}p)$
 $= Z.$
trivial $a_{0}\pi_{1}(A) = 0.$
 $(j_{B})_{*}[r] \in \pi_{1}(B_{1}p)$
becomes the concatenated loop
 $a_{1}^{P}a_{2}^{P_{A}}...a_{n}^{P_{n}}...a_{n}^{P_{n}} = e$

=) by von Kampon theorem

$$TT_1(X) = TT_1(t) * TT_1(B) = \sum_{j=1}^{n} G_j a_j^{p_j} a_n^{p_j} e_{j}^{p_j}$$

$$\frac{\int Q_1^{p_j} a_2^{p_j} \cdots a_n^{p_j} e_{j}^{p_j}}{\int Q_1^{p_j} a_2^{p_j} \cdots a_n^{p_j} e_{j}^{p_j}}$$
 TT_j

$$\begin{array}{c} \textcircled{(2)} \mathbb{R}\mathbb{P}^2 & \mathbb{T}_1(\mathbb{R}\mathbb{P}^2) \cong \mathbb{Z}_2 \\ & \swarrow & & \\ & & \swarrow & \\ & & & & \\ & & & & \\ & & & \\ &$$

the first appearance of each letter in the

$$\overline{\Phi} : * \pi_{1}(A\alpha_{1}\beta) \longrightarrow \pi_{1}(X_{1}\beta) sd.$$

$$\overline{\Phi} : * \pi_{1}(A\alpha_{1}\beta) \longrightarrow \pi_{1}(X_{1}\beta) sd.$$

$$\overline{\Phi} : = (t_{\alpha}) * \circ is surjective.$$

$$(Atready proved for the special case of the vankamper thm.)$$

$$(a) H A \alpha \cap A \beta \cap A s & path-connected by friple $\alpha_{1}\beta \cdot s \in J$ there $Kar \Phi = \langle S \rangle_{J}$ where $S = \begin{cases} (J_{\alpha}\beta)_{*}[b](\Box_{\beta}\alpha_{1}\beta_{1}b]^{-1} \mid \alpha_{1}\beta \in J \\ [r] \in \pi_{1}(A\alpha \cap A \beta_{1}\beta_{1}b) \end{cases}$

$$So. if F = * \pi_{1}(A\alpha_{1}\beta_{1}) \rightarrow there \alpha_{1}\delta = \begin{cases} (J_{\alpha}\beta)_{*}[b](\Box_{\beta}\alpha_{1}\beta_{1}b) \mid \alpha_{1}\beta \in J \\ [r] \in \pi_{1}(A\alpha \cap A \beta_{1}\beta_{1}b) \end{cases}$$

$$So. if F = * \pi_{1}(A\alpha_{1}\beta_{1}b) \rightarrow there \alpha_{2}\delta = \begin{cases} (W_{1}) for veduced words w, w' \\ \alpha \in J \end{cases}$$

$$F(w) = \Phi(w') for veduced words w, w' \in F. then [W] = [W'] in F/(s)_{J} \cdot \int_{-1}^{0} T s \in J$$

$$r is a lopp based at b ei X, we say$$$$

[r] can be factored in the following sense $[r] = [r_1] * [r_2] * - - * [r_n] s + \cdot$ [r:] is a loop based at b and is contained in Adi We know that [r] can be factored. Any factorization of [8] ~ reduced word $W \in F$, $W = [\delta_1] + [\delta_2] + \cdots + [\delta_n]$. $Also \overline{\Phi}(w) = [r].$ Conversely, $W \in \overline{P}^{-1}([\gamma])$ can be realized as a factorization of [r] s.t. each letter is a loop based at b and contained in exactly one of the open sets. :. Showing (1) is same as this: - we need to show that any two factorizations of I can be related to each other by a finite sequence of the following operations and their inverses.

(1) If & and Vi+1 are adjacent loops, ie, $Q_i = Q_{i+1}$, we replace them w/ $V_i * v_{i+1}$. (2) replace some of w/ di sit di =p Vi in Adi. 3 If Si E AdinAB, di, BE Then we can replace ai w/B i.e. in the corresponding volueed word in F. whenever we have $(j_{\alpha_i\beta})_* [v_i] \in \Pi, (A_{\alpha_i}, b)$, we can replace $i+ \omega/ (j_{Ba_i}) * [c_i] \in \pi_1(A_{B,p}).$ This operation 3 changes the neduced word WEF, it won't change the eq. class INJE F/<s/ Basic idea: - create a subdivision of IXI w/ the required properties. $if \quad \forall_1 * \forall_2 * \cdots & \forall_n \simeq_p \forall_1 * \forall_2 * \cdots & \forall_n,$

