Lecture 17

Fi, di is a path in UNV from to f(Qi)

do and
$$\alpha n$$
 is just the constant path at xo.
 $[g_1] * [g_2] * \cdots * [g_n] = [f_1] * [f_2] * \cdots * [f_n] = [f_1].$

$$T_{1}(S^{n}, bo) = \int o \{ F n \ge 2$$

$$U = S^{n} \setminus S p \}, V = S^{n} \setminus S p \}$$

$$R^{n}$$

$$R^{n}$$

$$R^{n}$$

$$R^{n}$$

$$T_{1}(RP^{n}, x_{0}) \cong \mathbb{Z}_{2} = \mathbb{Z}/2\mathbb{Z}$$

$$\frac{2}{2\mathbb{Z}}$$

$$\frac$$

For the could map, wrap the x-axis around the
circle A, wrap the Y-axis around B.
Each circle tempert to the integer points on the x-axis
is mapped homeomorphical onto circle B.
"________ on the y-axis
"________ on the y-axis
"________ circle A.
Ill the integer points are matped to xo.
Consider
$$f: I \longrightarrow E$$
 $f(s) = (s, o)$ from $\binom{(o, o)}{(1, o)}$ to
 $g: I \longrightarrow E$ $g(s) = (o, s)$ from $\binom{(o, o)}{(1, o)}$ to
 $(o, 1)$
Let $f = pof$ body based at xo is fg.8
 $g = pog$..______ xo ei fig. 8.
for and $g = f$ are loops at xo.
Claim: - for g onto $g = f$ are not path-homethylac.
If they were path-homethylic them from the section
on the path-lifting property, we know the ends points
of $f = g$ ond $g = f$ must be the some.
But the way we have described p , one path ends
at $(1, o)$ and the other at $(0, 1)$
 \Rightarrow $f = g = g = g = g = f$ to be and $f = g$ for $f = f$ and $f = f$ for $f = f$ for

$$\frac{\sum_{ijnession} into Group theory}{gain group} {a} = \int a^{n} |n \in \mathbb{Z} \\ gain gain group group gain group a^{o} = e^{n} gain gain gain group (G, .) - group. Group det by a a' a'' a'' = a^{n+m} g: G - H homomorphism if $e^{-m} = e^{-1}$ ".
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $g(g_1, g_2) = g(g_1) \cdot g(g_2)$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 1 \rangle - \langle -1 \rangle$
 $Z = \langle 2 \rangle$
 $Z = \langle 2$$$

An - alternating groups., normal subgroup of Sn.

$$N \triangleleft G \sim N$$
 is a normal subgroup of G.
Cosets:- $H \leq G$, $g_1 H = \{g_1 h\}$ hell $\{coset of Hin G\}$
 $G = \{g_1 H, g_2 H, g_3 H, \dots, \}$
 $G = \{g_1 H, g_2 H, g_3 H, \dots, \}$
 G/H will be a group set $H \triangleleft G$.
 $(g_1 H) \cdot (g_2 H) = (g_1 g_2) H$

First Isomorphism Theorem Let $\varphi: G \longrightarrow H$ be a homomorphism. Denote by ker φ , the kernel of the hom. φ . ker $\varphi = \{g \in G \mid \varphi(g) = e_H \}$. ker $\varphi \neq G$. $G/ker \varphi \cong im(\varphi) \leq H$. $if \varphi$ is surjective then $G/ker \varphi \cong H$.

Sirect Sum of abelian groups G is an abelian and let $\{G_{\alpha}\}_{\alpha\in J}$ is an indexed femily of outgroups of G.

$$X = X_{d_1} + X_{d_2} + \dots + X_{d_n} \quad \text{ort} \quad d_i \neq d_j.$$

$$X = \sum X_{d_1} + X_{d_2} + \dots + X_{d_n} = 0 \quad \text{for all but finitely many}$$

$$A \in J \qquad \qquad X_{d_n} = \text{identity} \qquad Q'_{d_n}.$$
element