Lecture 16

* no problem set this week. Next problem session will cover some other topics from the course.

Recall:-
Defermation vehact:-
$$A \subset X$$
, deformation vehact
 $\exists H: X \times I \longrightarrow X \quad a \leftrightarrow H(x, o) = x \text{ ord } H(x_1) \in A$
ond $H(a_1+) = a \quad \forall a \in A, t \in I$.
 $r(x) = H(x_1)$ vehaction of X onto A.
 $j: A \longrightarrow X$ induces an isomorphism of fundamental
groups.
Homotopy type
 $f: X \longrightarrow Y, g: Y \longrightarrow X$ if
 $f \circ g: Y \longrightarrow Y \simeq id_Y \quad ord g \circ f: X \longrightarrow X \simeq id_X$
 $f \text{ ond } g \text{ are homotopy equivalence}.$
Lemma Let h ord $k: X \longrightarrow Y$ be contimates and $h(x_0) = y_0$
ond $R(x_0) = y_1$. If $h \subset R$ then $\exists a$ path α with Y
from y_0 to y_1 ort: $R_* = \hat{a} \circ h_*$
 $\tilde{a}(rfs) = rd^{-1} * If J \circ Ed$.

If $H: X \times T \rightarrow Y$ is the hom. b/ω handk then $\alpha(t) = H(x_0, t).$ $\overline{W}_1(X, x_0) \xrightarrow{h_{\overline{x}}} \overline{v} = \overline{TT}_1(Y, Y_0)$ $\overline{X}_1(Y, y_0) = \overline{X}_1(Y, Y_0)$

$$\frac{\operatorname{Proof}:}{\operatorname{Final}:-} \quad f: J \longrightarrow X \text{ is o loop at } x_{o}$$

$$\operatorname{Want:-} \quad k_{*}([f]) = \hat{\alpha}(h_{*}(fJ))$$

$$= \sum_{k \to f} [k_{o}f] = [\alpha]^{-1} * [h_{o}f] * [\alpha]$$

$$= \sum_{k \to f} [k_{o}f] = [\alpha]^{-1} * [h_{o}f] * [\alpha]$$

Consider loops fo and f_1 in $X \times I$ $f_0(s) = (f(s), o)$ and $f_1(s) = (f(s), i)$ consider the path c in $X \times I$, given by $C(t) = (x_0, t)$

Note, Hofo = hof, Hof, = kof, Hoc = or Suppose F: IxI - XxI be the map F(s,t) = (f(s), t) other, the paths in TxI

Corr: h, R: X - Y homotopic, cont. maps
$$w/h(x_0) = y_0$$

R(x_0) = Y, Then is injective, ourjecture or
trivial tree so is R_* .
 $R_* = \hat{Q} \cdot h_*$

Con. h: X - Y is nullhomotopic then he is trivial.

$$\frac{\operatorname{Theorem} := \operatorname{ket} f : X \to Y \text{ be cont} \cdot \omega / f(x_0) = y_0. \text{ If}$$
f is a homotopy equivalence (or X and Y have the same homotopy type), then
$$f_{x} : \operatorname{TT}_1(X, x_0) \longrightarrow \operatorname{TT}_1(Y, y_0)$$
b) an feomorphism (spaces having the same hom fype have isomorphic functionential groups)
Ref het $g : Y \longrightarrow X$ hom inverse of f.
$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (X, x_1) \xrightarrow{f} (Y, y_1)$$

$$\operatorname{TT}_1(X, x_0) \xrightarrow{(f_{x_0})_{x_0}} \operatorname{TT}_1(Y, y_0)$$

$$\int_{y_0}^{y_0} g_{x_0}$$

$$\operatorname{TT}_1(X, x_1) \xrightarrow{(f_{x_0})_{x_0}} \operatorname{TT}_1(Y, y_1)$$

$$g_{0}f : (X, x_0) \longrightarrow (X, x_1) \simeq \operatorname{id}_{X} \longrightarrow$$

$$J = \operatorname{path} \alpha \text{ sue } X \text{ from } x_0 \text{ to } x_1 \text{ soft}$$

$$(g \circ f)_{*} = \hat{\alpha} \circ (i d_{x})_{*} = \hat{\alpha}$$

$$i \Rightarrow \qquad (g \circ f)_{*} = g_{*} \circ (f_{*o})_{*} \text{ is an isomorphism.}$$

$$\exists \text{Imilarly, for (f \circ g) \simeq i d_{y} = p$$

$$(f \circ g)_{*} = (f_{x_{1}})_{*} \circ g_{*} \quad i \circ \text{ an isomorphism.}$$

$$g_{*} \quad i \circ \text{ anijective} \quad g_{*} \quad i \circ \text{ injective.}$$

$$= g_{*} \quad i \circ \text{ an isomorphism}$$

$$g_{md} \quad (f_{xo})_{*} = (g_{*})^{-1} \circ \hat{\alpha}$$

$$= p \quad (f_{xo})_{*} \quad i \circ \text{ an isomorphism}$$

$$[1]$$

<u>Remark</u> :- Quen though g is the homotopy inverse of f, the induced isomorphisms are NOT the inverses of each other.

<u>Theorem</u> Suppose $X = \bigcup \bigcup \bigvee$ where $\bigcup and \bigvee are open$ $bets of X. Suppose that <math>\bigcup \bigcup is path connected and$ $<math>X_0 \in \bigcup \bigcup$ het $i: \bigcup \longrightarrow X$ and $j: \bigvee \longrightarrow X$ be the inclusion mappings. Then the images of the Induced homomorphisms

$$i_* : \pi_1(U_1 x_0) \longrightarrow \pi_1(X_1 x_0) \text{ ond}$$

 $j_* : \pi_1(V_1, x_0) \longrightarrow \pi_1(X_1 x_0)$

generate TT, (Xixo), i.e., Juppose f is a loop in X based at xo then f is path homotopic to a product of the form (9,*(92*(93*(---*9n)))) where each g; is a loop in X based at xo and it lies either in U or in V.

Corrollary: $X = U \cup V$, U, V opensets in X, $U \cap V \neq \phi$, path connected. If U and V are simply connected then X is simply connected.

For
$$n \ge 1$$
, the punctured sphere $S^n - p$ is homeomorphics
to \mathbb{R}^n . (U and V one simply connected).
 $f: S^n - p \longrightarrow \mathbb{R}^n$ reference qualitic projection.
 $f(x) = f(x_1, \dots, x_{n+1}) = \frac{1}{1 - x_{n+1}} (x_1, \dots, x_n)$
 $f^{-1} = g: \mathbb{R}^n \longrightarrow (S^n - p)$ given by
 $g(y) = g(y_1, \dots, y_n) = (t(y) \cdot y_1, \dots, t(y) \cdot y_n, y_{n-1} + t(y_1))$
 $f(y) = \frac{x}{(1 + 11 - y_1)^2}$
 $U = S^n - p$, $V = S^n - p$ open sets we the corr.

UNV is path connected. $U \cong \mathbb{R}^n$ and $V \cong \mathbb{R}^n \Longrightarrow$ simply connected $= \mathbb{D}$ $\operatorname{TT}(S^n, b_0) = \{0\}$, $n \ge Q$.

$$\frac{1}{2} \left(\frac{1}{RP}, n \ge 2 \right).$$

$$RP^{n} = \frac{1}{2} \left(\frac{1}{RP}, n \ge 2 \right).$$

$$RP^{n} = \frac{1}{2} \left(\frac{1}{RP}, n \ge 2 \right).$$

$$X \sim -X, \quad X \in \mathbb{S}^{n}.$$

$$P : S^{n} - RP^{n} \quad \text{the quotient map.}$$

$$\underbrace{\operatorname{Com}}_{\mathrm{TI}}: \operatorname{TI}_{1}(\operatorname{RP}^{n}, \operatorname{y}) \text{ is a group of order } \mathcal{A} \cong \mathbb{Z}_{2} = \mathbb{Z}_{27}^{\prime},$$
$$\operatorname{TI}_{1}(\operatorname{RP}^{n}, \operatorname{y}) \cong \mathbb{Z}_{2} = \mathbb{Z}_{27}^{\prime}, n \geq 2.$$

proof We show
$$p: S^2 - IRP^2$$
 is a couving map.
Granted this, We know $TT_1(RP^2; y)$ as a set
is in bijecture correspondence $p^{-1}(y)$.
I has exactly 2 elements
 $J_1 - y$.
 $TT_1(RP^2; y) \cong Z_2$.

Even: Show that
$$p: S \rightarrow IRIP$$
 is a coulding map,
 p is a 2-fold coulding map.

Fi then we are done.
If not, then let i be an index of
$$f(bi) \notin U \cap V$$
.
Then $f(Ib_{i-1}, b_i]$ and $f(Ib_i, b_{i+1}]) \subset U$ or
V. If $f(b_i) \in U$ then must lie in U
if $f(b_i) \in V$ then " in V
Delete this point bi from the subdivision and

Obtaine a romaller subdivision Corci,... Com-1 that vootisfies $f(Ici-1, CiJ) \subset U$ or $U \notin i'$.

Repeat this procedure finitely mony times gives the required subdivision.

Step 2 Guinen
$$f$$
, a_0, a_1, \dots, a_n be the subdivision
in Step 1.
Define $f_i^{\circ} = f * plm of [0_11] - [a_{i-1}, a_{i}]$
 $[a_{ib}] - [c_{id}] plm y = mx + k$
 $v + a - c$
 $b - id$.

The path fi lies either in Vorin V [f] = [fi] * [fi] • --- • [fn] 5 i, choose a path oi from xo to f(ai) in Unit. :: $f(a_0) = f(a_n) = x_0 = p$ let's choose α_0 and α_n to be the constant path of x_0 . Set $g_i = (\alpha_{i-1} * f_i) + \alpha_i^{-1}$ $\forall i$

> L loop in X based at Xo, its image hes either in U or in V.

0

[9,]*[9e]* ··· * [gn] = [f1] • [f2]*··· » [dn]

0