Lecture 14

* PSet 5 will be uploaded after the prodem-session. Reall :-Theorem: - Let h: St -- X be a continuous map. Then TFAE :-1) h is nullhomotopic. 2) hextends to a continuous map R: B²-X. 3) hx is the trivial hom. of fundomental groups. i.e., $h_{*}(IfJ) = IeJ in \pi_1(X, x_0)$. () => 2) and 2) => 3) done. (3) → (1) het p: R→S' be the usual couling map omd let bo: I - S' be by. Then as we disussed, [\$] generates the cyclic group IT (St, bo) as is storts at 0 and ends at 1. het $X_0 = h(b_0)$. · h. : TTI (S1, b0) - o TTI (X 1x0) is triveral the hop [f]= (hop) is the edentity element of TT1 (X, x0). : 3 a path hom. in X, F b/co f and exo.

We note that
$$p_0 \times \operatorname{sd} : \mathbb{I} \times \mathbb{I} \longrightarrow S' \times \mathbb{I}$$
 is a quartient
map which is injective apart from
 $\operatorname{Oxt} \{ \longrightarrow \operatorname{boxt} \quad \forall \quad t \in \mathbb{I}.$
 $\operatorname{Ixt} \} \longrightarrow \operatorname{boxt} \quad \forall \quad t \in \mathbb{I}.$
moreover $F(O \times \mathbb{I}) = F(I \times \mathbb{I}) = F(\mathbb{I} \times \mathbb{I}) = \times \operatorname{cgX}$
 $: from the thusion on continuous maps of quartient
spaces $\exists a \quad \operatorname{continuous} \quad \operatorname{map} \quad H: \quad S' \times \mathbb{I} \longrightarrow X$
which is a homotopy $\forall \omega$ h and a constant map
 \Longrightarrow h is multipomotopic.
 $\blacksquare$$

Corr.:- The inclusion map $j: S^1 \rightarrow \mathbb{R}^2 - \{0\}$ is not nullhomotopic. The id: $S^1 \rightarrow S^1$ is not multhomotopic. Proof.:-There is a vetraction of $R^2 - \{0\}$ entro S^1 . There is a vetraction of $<math>R^2 - \{0\}$ entro S^1 . $T(x) = \frac{x}{\|x\|}$ =D j, is injective =D j, cannot be trivial :- by the previous them, j is not nullhomotopic.

If $B^2 \subseteq \mathbb{R}^2$, then a vector field on B^2 is an ordered pair (x, v(x)), $x \in B^2$ and v is a continuous map from $B^2 \longrightarrow \mathbb{R}^2$.

Theorem :- Given a nonvanishing vector field on
$$B^2$$
,
 $\exists \alpha \text{ point of } S^1 \text{ where the vector field points}$
directly inward and a point of S^1 where the v.f. points
directly outwards.
 $Root:-$ het $v(x)$ be the v.f. on
 B^2 nonvanishing means
 $v(x) \neq 0 \in \mathbb{R}^2$ $\forall x \in B^2$.
 $v: B^2 \longrightarrow \mathbb{R}^2 - z_0 z_1$.
Suppose $v(x)$ doesn't point inward at one point $x \in S^1$

Suppose U(x) doesn't point inward at any point $x \in S^{2}$ $U : B^{2} \rightarrow R^{2} = \{0\}$ $W = U_{|_{S^{1}}} : S^{1} \longrightarrow R^{2} = \{0\} = 1$ from the equivalence of 1) and 2) we the previous thm, $W : S^{1} \rightarrow R^{2} - \{0\}$ is multhomotopic.

If we can produce a homotopy b/co is and the inclusion map $j: S^1 \longrightarrow \mathbb{R}^2 - SoS$ then we'll have a contradiction.

Consider
$$F(x,t) = tx + (1-t)w(x)$$

 $x \in S^{\perp}$. $F(x_{10}) = w(x)$ and $F(x_{11}) = x = j(x)$
 $= t$ if $F \neq 0$ then F is the nequired homotopy.
 $F(x_{1}t) \neq 0$ for $t=0$ and $t=1$.
If $F(x_{1}t) = 0$ for some $t = w/o(t<1)$
 $= t + (1-t)w(x) = 0 = t = w(x) = \left(\frac{t}{t-1}\right)x$

=)
$$w(x)$$
 points directly inward at x.
=0 $F(x,t) \neq 0$ => we have a contradiction.
:. I a point $x \in S^{\perp}$ where $w(x)$ point directly inward.

$$\begin{array}{l} \underline{\mathrm{Thm}} & \left(\mathrm{Brouwer} \ \mathrm{fixed} \ \mathrm{point} \ \mathrm{theorem} \ \mathrm{for} \ n=2/\mathrm{for} \ \mathrm{the} \\ & \mathrm{disc} \ \right). \\ \mathrm{lf} & \mathrm{f} : \mathrm{B}^2 \to \mathrm{B}^2 \ \mathrm{is} \ \mathrm{continuous} \ , \ \mathrm{then} \ \mathrm{J} \ \mathrm{a} \ \mathrm{fixed} \ \mathrm{point} \ \mathrm{ef} \ \mathrm{f} \\ & \mathrm{i.e.}, \ \ \mathrm{J} \ \mathrm{x} \in \mathrm{B}^2 \ \ \mathrm{s.t.} \ \ \mathrm{f(x)} = \mathrm{x.} \\ \\ \underline{\mathrm{Poof}} : - \ \mathrm{We} \ \mathrm{prove} \ \mathrm{key} \ \mathrm{contradiction} \ , \ \mathrm{i.e.} \ \ \mathrm{Ouppose} \ \ \mathrm{J} \ \mathrm{ony} \\ & \mathrm{x} \in \mathrm{B}^2 \ \ \mathrm{s.t.} \ \ \mathrm{f(x)} = \mathrm{x.} \end{array}$$

define
$$V(x) = f(x) - x$$
 is a nonvanishing v.f.
 $(x, v(x))$ on \mathbb{B}^2 . From the previous that $\exists x \in S^1$
 s^{-1} . $f(x) - x = \mathbb{Q} \times for \exists one \mathbb{Q} > 0$.
 $\Rightarrow f(x) = \mathbb{Q} \times + x = (1 + \mathbb{Q}) \times (1$

Then A has a positive real eigenvalue. Proof: Let $T : \mathbb{R}^3 - \mathbb{R}^3$ be the linear map estrose matrix is \tilde{A} .

$$B = \text{intensection of } S^2 \text{ w/ the 1st Octowl of } R^3$$

$$\begin{cases} (x_1, x_2, x_3) \\ x_3 \ge 0 \end{cases}$$

$$x_3 \ge 0 \end{cases}$$

B is homeomorphic to B². = D the fixed point thm

holds for cent maps of
$$B \rightarrow B$$
.

$$\begin{pmatrix} x_{1,1}, x_{2,1}, x_{3} \end{pmatrix}$$
If $x \in B$ then all components are non-negative and atteast one is positive.

$$= D \quad T(x) \in \mathbb{R}^{3} \text{ all of chose components are positive} \\ = D \quad x \longmapsto e \quad \frac{T(x)}{||T(x)||} & B \longrightarrow B \\ ||T(x)|| & B \longrightarrow B \\ ||T(x)|$$

Borsuk-Ulem Theorem (problem set 5) Given a continuous map $f: S^2 \rightarrow \mathbb{R}^2$ $\exists x \in S^2$ with f(x) = f(-x).

The fundamental theorem of Algebra
A polynomial

$$x^n + q_{n-1} x^{n-1} + q_{n-2} x^{n-2} + \dots + q_1 x + q_0$$

of degree n w/ val or complex coefficients has at
least one noof.

Proof:
$$f: S^{1} \longrightarrow S^{1}$$
, $f(g) = g^{n}$, $n \in \mathbb{Z}$,
 $f_{*}: \pi_{1}(S^{1}, b_{0}) \longrightarrow \pi_{1}(S^{1}, b_{0})$ of fundamental
groups six injective.
Let $p_{0}: I \longrightarrow S^{1}$ standard loop of S^{1}
 $p_{0}(S) = e^{2\pi i S} = (cos 2\pi s, sin 2\pi s)$
image of $p_{0}(S)$ under f_{*}
 $f(p_{0}(S)) = (e^{2\pi i S})^{n} = (cos 2\pi \pi s, sin smns)$
it his loop lifts to the path $S \mapsto ros in R$.
 $s = bieusing this map sin R.$
 f_{*} is just multiplication by n
 $\Rightarrow f_{*}$ is injective.
if $g: S^{1} \longrightarrow R^{2} = S_{0}^{2}$
 $g(s) = g^{n}$ then g is mot nullhomotopic.
 $g = j \circ f$
 $j: S^{1} \longrightarrow R^{2} = S_{0}^{2}$.
 $\therefore f_{*}$ is injective. = $0 = f_{*} = f_{*} \circ f_{*}$ is

injective = q is not null homotopic. Given $x^{n} + a_{n-1}x^{n-1} + \cdots + a_{1}x + a_{0} = 0$ $|Q_{n-1}| + \cdots + |Q_1| + |Q_n| < 1$ Oasume and show that the egn has a not lying in B2. Duppose not. R: B² R²- 309 by $R(3) = 3^{n} + Q_{n-1} 3^{n-1} + \dots + Q_{1} 3^{n} + Q_{0}$ $hot h = R_{|_{\mathcal{S}'}} : \mathcal{S}' \to \mathbb{R}^2 - \frac{5}{20} \mathcal{S}$ = h is multimotopic (from the previous Amm.) We'll get a contradiction by producing a homotopy w/w hand g. define F: S'xI - R- 303 $F(32,t) = 3^{n+1} + t(a_{n-1}3^{n-1} + \dots + a_13^{n+1} + a_0)$ $F(\mathcal{F}, \mathfrak{o}) = \mathcal{F}^n = \mathcal{F}$ $F(\gamma_{i}) = h$ $(\underline{Claumi}:-F(\mathfrak{Z},t)\neq 0.$ $|F(z_1t)| \ge |z^n| - |t(a_{n-1}z^{n-1} + \dots + a_1z + a_0)|$

$$\geq 1 - t \left(|Q_{n-1} + Z_{n-1} + \dots + Q_{1} + Q_{n} + Q_{n} | \right)$$

$$\geq 1 - t \left(|Q_{n-1}| + |Q_{n-2}| + \dots + |Q_{n}| \right)$$

$$\geq 0$$

$$\Rightarrow 0$$