$$\frac{\text{Recall}}{\text{Recall}} := E \xrightarrow{f} f: X \rightarrow E \text{ is a lift of } f \text{ if } f \text$$

Parth-lifting lemme $p: E \rightarrow B$ conversing map u/ $p(e_0) = b_0$. dry path $f: [0_{1}] \rightarrow B$ at b_0 has a unique lift to o path \tilde{f} in E storting at e_0 . E_0

<u>Homotopy-lifting lemma</u> $p: E \rightarrow B$ covering map of $p(e_0) = b_0$. Let $F: I \times I \rightarrow B$ be continuous of $F(0,0) = b_0$. $\exists I$ lift of F to a continuous $map \quad \widehat{F}: I \times I \rightarrow E \quad \text{wf} \quad \widehat{F}(0,0) = e_0$. If F is a path homotopy then so is \widehat{F} .

þl

The
$$p: E \rightarrow B$$
 counting map $w/p(e_0) = b_0 \cdot Let f,g$ be two
path in B from bo to by and \tilde{f}, \tilde{g} be lifts in E , starting
at eo. If $f \simeq_p g$ than $\tilde{f}(i) = \tilde{g}(i)$ and $\tilde{f} \simeq_p \tilde{g}$.

Define het
$$f: E \rightarrow B$$
 conversing map, bo $\in B$, $p(e_0) = b_0$.
[f] $\in \pi_1(B, b_0)$, \overline{f} be the lift of f to a path in \overline{E} ,
beginning in e_0 . Let $p(Ef]$ be the end point $\overline{f}(1)$
of \overline{f} . $p: \pi_1(B, b_0) \longrightarrow p^{-1}(b_0)$
 $\varphi - lifting correspondence.$
Theorem het $p: E \rightarrow B$ conversing map, $p(e_0) = b_0$.
If E is path connected, then $\varphi: \pi_1(B, b_0) \longrightarrow p^{-1}(b_0)$
is surjective. If \mathcal{E} is simply connected, it is bijective.
Proof: If E is path connected and $e_1 \in p^{-1}(b_0)$ then
 \exists a path \overline{f} in \mathcal{E} from e_0 to e_1 . $f = p_0 \overline{f}$ is a
loop sie B at b_0 . \Rightarrow $[f] \in \pi_1(B, b_0)$ and
 $\varphi(EfJ) = e_1 \Rightarrow \varphi$ is surjective.

Suppose E is Jimply connected. Let [f] and [g] ETTI(B, b) and let $\phi(IfJ) = \phi(IgJ) = f(I) = f(I)$, f and g begin at eo. J a path homotopy F b/w f and g = D $F = \phi F$ is a path hom. Was f and g with = If J = IgJ = D ϕ is a bijection.

- -

Proof.
a) het
$$\tilde{b}$$
 be a loop based at $e_0 \, s.t \, p_*(\tilde{t}hJ) = [e_{b_0}] \in \Pi_1(B, b_0).$
F is a path homotopy b/ω for h and e_{b_0} .
If \tilde{F} is the lift of F with $E = w/\tilde{F}(0,0) = e_0$

: [f] = [h * g] = 0 f and $\tilde{h} * \tilde{g}$ must end at the same point. $\Rightarrow \phi([f]) \phi = \phi([g])$.

Set H A = X, a subtraction of X onto A is a continuous map $v: X \longrightarrow A$ s.t. $v_{|_A} = id_A$. If such a r exists then we say A is a refrect of X.

Proof
i) =
$$72$$

Let $H: S' \times I \longrightarrow X$ be a homotopy b/w h and
a constant.
 $TT: S' \times I \longrightarrow B^2$ given by
 $T(x,t) = (1-t) \times$

Check:- IT is a quotient map. It is injective apart from S'XI = from the thrm on Continuous functions on quotient spaces I a Map k: B² ~ X continuous and k/s1=h.

2) \Longrightarrow S). $j: 5^{1} \longrightarrow B^{2}$ induction $j(x) = x \in B^{2}$ $R: B^{2} \longrightarrow X$ $h = h_{|s^{1}|}$ \Rightarrow $h: 5^{1} \longrightarrow X$ $h = k_{0}j \cdot By$ functional prof. of the functionent group , $h_{*} = k_{*} \circ j_{*} : \pi_{1}(s', b_{0}) \longrightarrow \pi_{1}(x, x_{0})$ $j_{*}: \pi_{1}(s^{1}, b_{0}) \longrightarrow \pi_{1}(B^{2}, b_{0})$ is trivial as $\pi_{1}(B^{2})$ is $\implies h_{*}$ is trivial.

(3)
$$\Rightarrow$$
 (1) bet $p: \mathbb{R} \to S'$ be the usual counting map
and let $p_0: I \to S'$ be $p|_I$.
Then as we discussed. Et of generates the cyclic group
 $TI_1(S^1, b_0)$ as p_0 starts at 0 and ends at 1.
Let $x_0 = h(b_0)$.
 $\Rightarrow h_*: TI_1(S^1, b_0) \longrightarrow TI_1(X_{1X_0})$ is their
 \Rightarrow the bop $[f] = [h_0 p_0] i_S$ the identity element of
 $TI_1(X, x_0)$.
 $\therefore \exists a path hom. in X, F b/co f and exo.$
We note that $p_0 x_{id}: I \times I \longrightarrow S^1 \times I$ is a quotient
map which is injective apart from
 $0 \times t \{ \rightarrow b_0 \times t \} \not f t \in I.$
 $Torreover F(0 \times I) = F(1 \times I) = F(I \times I) = x_0 \notin X$
 \Rightarrow from the theorem on certinuous maps of quotient
spaces $\exists a$ continuous map $H: S' \times I \longrightarrow X$
which is a homotopy Yw h and a constant map
 \Rightarrow h is multipoint pic.

۵_____ » ____ ۵