Lecture 12

* Prob. Set 4 due on 01/06/21.

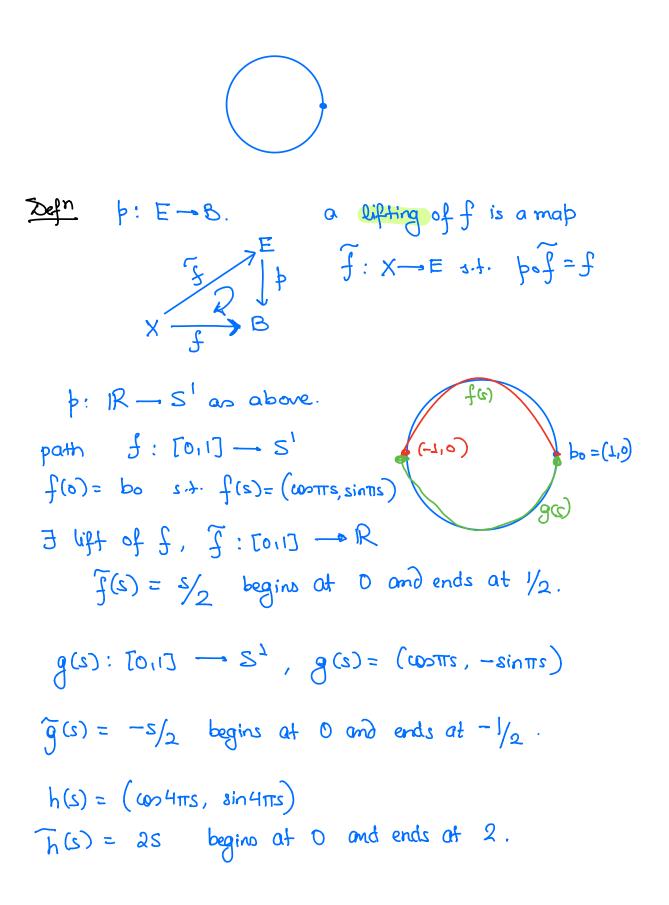
Recall:- p: E - B continuous aujedine map. U - B is evenly covered by p ig p⁻¹(U) = L. Va , Va con E pluz: Va - U is a homeomorphism. SVaS partition of p⁻¹(U) into strices. p: E - B cont., surjective. If F be B = U=b.

UCB which is evenly covered by p then p is open a covering map, E cover or a covering space of B.

$$p: \mathbb{R} \longrightarrow S^{1}$$

 $p(x) = (cos attx, sin attx)$ covering map.

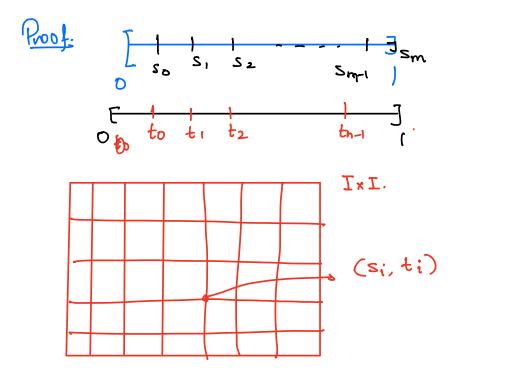
 $p \times p' : E \times E' \longrightarrow B \times B'$ is also a covering map if $p : E \rightarrow B$ and $p' : E' \rightarrow B'$ is a covering map.



$$\frac{\text{kemma}(\text{path-lifting Lemma})}{\text{ket } \text{p: } E \rightarrow B \text{ be a covering map}, \text{p(e_0)} = \text{bo.}$$
Any path $f: [o_{11}] \rightarrow B$ beginning at bo has a unique lifting to 0 path f in E beginning at eo.
$$\underbrace{I + P}_{f} = \underbrace{I + P}_{f}$$

Uniqueness Juppose \tilde{f} is another lifting of f beginning $ot e_0$. $\tilde{f}(o) = \tilde{f}(o) = e_0$. Juppose $\tilde{f}(s) = \tilde{f}(s)$, $o \le s \le s_i$ \cdots $f([s_i, s_{i+1}]) \subset U \subset B$, $\tilde{f}(s)$ is a lift of f, i.e., $p_0 \tilde{f} = f$

Lemma (Homotopy - Lifting lemma)
Let p: E-B be a counting maps
$$p(e_0) = b_0$$
.
Let F: I×I-B be continuous us/ $F(0,0) = b_0$.
There is a unique lifting of F to a continuous
map $F: I \times I \longrightarrow E = 0.1$. $F(0,0) = e_0$.
If F is a path homotopy, then so is F.



 $\widehat{F}(0,0) = e_0$. By the previous lemma, extend \widehat{F} to the left edge $0 \times I$ and the bottom edge $I \times 0$.

Aboume F is a continuous lift of FIA.
Define F on
$$I_{i_0} \times J_{j_0}$$
 as follows:
Duppose $F(J_{i_0} \times J_{j_0}) \subset \bigcirc \subset B$
pet $\{ \forall_a \\ \\ be a partition of p^{-1}(o).$
F is already defined on $A \cap (I_{i_0} \times J_{i_0})$
F $(A \cap (I_{i_0} \times J_{j_0}))$ must be connected inside
 $\bigcup \forall_{a}$, but $F(i_{0}, J_{0}) \in V_{0}$ (Bay)
=P $F(A \cap (I_{i_0} \times J_{i_0})) \subset V_{0}$
 $F(x) = (P|_{V_0})^{-1} (F(x))$
Continuity of F and uniqueness follows via the same reasoning as before.

Suppose F is a path homotopy in B. $F(0 \times I) = bo \text{ and } :: \widetilde{F} \text{ is a lift of } F \Longrightarrow$ $\widetilde{F}(0 \times I) = p^{-1}(b_0) = \sum_{i=0}^{\infty} a_i p^{-1}(b_0) \text{ has}$ oliscrete topology in E as $F(0^{\pi}I)$ is connected. Similarly $F(I \times I) = \{e_i \}$ =) F is a path-homotopy.

If f and g are path-homotopic then f and g end at the same point. and are path homotopic.

Proof

$$F(s_{10}) = \tilde{f}(s)$$
 If $s \in I$
 $F[I \times I]$ path in E which is a lift of $F[I \times I]$
 $= D$ $F_{[I \times I]}$ behaves at e_0 , by uniqueness of path
 $Iiff$ $F(s_{11}) = \tilde{g}(s)$

covering map. Let
$$e_0 = 0$$
. $b_0 = (1, 0)$.
 $p^{-1}(b_0) = p^{-1}((1, 0)) = \mathbb{Z}$
 $p^{-1}(b_0) = p^{-1}((1, 0)) = \mathbb{Z}$
 $p^{-1}(b_0) = p^{-1}((1, 0)) = \mathbb{Z}$ is bijective.
 $p^{-1}(b_0) = p^{-1}(p^{-1}(p^{-1})) = \mathbb{Z}$ is bijective.
 $p^{-1}(p^{-1}(p^{-1})) = \mathbb{Z}$ is bijective.
To show that p is a group homomorphism.
Let $f(1)$, $f(2) \in \pi_1(S_1^{-1}(b_0))$.
 $p^{-1}(f(1)) = f(1)$, $m = \tilde{g}(1)$.
 $p^{-1}(f(1)) = m$, $\tilde{g}(f(2)) = m$ (by def).
Let $n = \tilde{f}(1)$, $m = \tilde{g}(1)$.
 $p^{-1}(f(2)) = n$, $\tilde{g}(f(2)) = m$ (by def).
Suppose \tilde{g} be the path
 $\tilde{g}(s) = n + \tilde{g}(s)$ in $f(1)$.
 $p^{-1}(f(1)) = p(x)$ if $x \in IR$
 $p^{-1}(f(1)) = p(x)$ if $x \in IR$
 $p^{-1}(f(1)) = p(x)$ if $x \in IR$
 $p^{-1}(f(1)) = p^{-1}(x)$ if $f(1)$ is the lift
 $p^{-1}(f(1)) = f(1)$ is defined, and it is the lift
 $p^{-1}(f(1)) = f(1)$ begins at 0.

