Lecture 11

Recall:- $\quad f, g: x \rightarrow y$ are homotopic if $\exists F: X \times I \rightarrow Y$ continuous sot.

$$
\begin{array}{ll}
F(x, 0)=f(x) & \forall x \in X . \\
F(x, 1)=g(x) &
\end{array}
$$

$f, g: I \rightarrow X$ are paths in e X, joining x_{0} end x_{1}. They are path-homotopic if $\exists F: I \times I \longrightarrow X$ continuous s.t. ($f \subset_{p g}$)

$$
\begin{aligned}
& F(s, 0)=f(s) \quad, F(s, 1)=g(s) \\
& F(0, t)=x_{0} \quad, F(1, t)=x_{1} \quad \forall s, t \in I .
\end{aligned}
$$

- \simeq and \simeq_{p} are equivalence relations.

For

The concatenation of f and g is a path h from x_{0} to x_{2}

$$
h(s)=\left\{\begin{array}{ll}
f(2 s) & \text { for } s \in[0,1 / 2] \\
g(2 s-1) & \text { for } s \in[1 / 2,1]
\end{array}=f * g\right.
$$

$$
[f] *[g]=[f * g]
$$

$\pi_{1}\left(X, x_{0}\right)=$ fundamental group of X relative to the bose point x_{0}

$$
=\left\{[\gamma] \mid \gamma \text { is a loop of } x_{0}\{\right.
$$

*

$$
e_{x_{0}}=\text { constant loop at }
$$

$$
[f]^{-1}=\left[f^{-1}\right]
$$

Remark :- $\pi_{1}\left(x, x_{0}\right)$ is a group. $\left[e_{x_{0}}\right]$

$$
\pi_{1}\left(\mathbb{R}^{n}, x_{0}\right)=\left\{\left[e_{x_{0}}\right]\right\}=0 .
$$

\because straight-line homotopy proves that any two paths in \mathbb{R}^{n} are path-homotopic \Rightarrow there is only one equivalence class $\Rightarrow \pi_{1}\left(\mathbb{R}^{n}, x_{0}\right)=0$.

Any convex subset of \mathbb{R}^{n}, then its fundamental group is again trivial.

The unit ball \mathbb{B}^{n} is e \mathbb{R}^{n}

$$
\text { " }\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\} \text { has trivial }
$$

fundamental group.
Suppose $x_{1} \in X$. Let α be a path in X joining x_{0} and x_{1}.

Define a map

$$
\begin{gathered}
\hat{\alpha}: \pi_{1}\left(x, x_{0}\right) \longrightarrow \pi_{1}\left(x, x_{1}\right) \\
\hat{\alpha}([f])=[\alpha]^{-1} *[f] *[\alpha]
\end{gathered}
$$

is a well-defined map as * is well-defined.
Theorem:- $\hat{\alpha}$ is an isomorphism of groups.

$$
\begin{aligned}
& \text { 甲: } G \longrightarrow G^{\prime} \text { is a homomorphism } \\
& \text { is } \varphi(g \cdot h)=\varphi(g) \cdot \varphi(h) \text {. } \\
& \varphi \text { is an isomorphism if it is a bijective } \\
& \text { homomorphism. }
\end{aligned}
$$

Proof $\hat{\alpha}$ is a homomorphism as,

$$
\hat{\alpha}([f]) * \hat{\alpha}([g])=\left([\alpha]^{-1} *[f] *[\alpha]\right) *\left(\begin{array}{c}
{[\alpha]^{-1} *[g]} \\
*[\alpha])
\end{array}\right.
$$

$$
\begin{aligned}
&=[\alpha]^{-1} *[f] *[g] *[\alpha] \\
&=\hat{\alpha}([f] *[g]) \\
& \hat{\beta}: \pi_{1}\left(x_{1} x_{1}\right) \longrightarrow \pi_{1}\left(x_{1} x_{0}\right) \\
& \hat{\beta}([h])=[\alpha] *[h] *[\alpha]^{-1}
\end{aligned}
$$

$\hat{\beta}$ is an inverse to $\hat{\alpha} \Rightarrow \hat{\alpha}$ is an isomorphism.
(2)

Corr:- If X is path connected then the fundamental groups relative to any point in X are all isomorphic.

Ever. The iso. b/wo $\pi_{1}\left(x, x_{0}\right)$ and $\pi_{l}\left(x, x_{1}\right)$ is independent of the path $\Delta \Rightarrow$ the fundamental) group is abelian.

Def X is Jimply-comnected if it is path-connected and is $\pi_{1}\left(x, x_{0}\right)=0$.

Suppose $h: X \rightarrow Y$ is a continewous map if

$$
h\left(x_{0}\right)=y_{0} . \quad h:\left(x, x_{0}\right) \longrightarrow\left(y, y_{0}\right)
$$

If f is a loop based at x_{0} then $h \circ f: I \rightarrow y$ is a loop in y based at yo.

Def. $h:\left(x, x_{0}\right) \rightarrow\left(y, y_{0}\right)$ is a continuous map. Define

$$
\begin{aligned}
& \left(h_{x_{0}}\right)_{*}: \pi_{1}\left(x, x_{0}\right) \longrightarrow \pi_{1}\left(y, y_{0}\right) \\
& \left(h_{x_{0}}\right)_{4}([f])=[h \circ f]
\end{aligned}
$$

$\left(h_{*_{0}}\right)_{x}$ is called the homomorphism induced by h.
$\left(h_{x_{0}}\right)_{*}$ is well-defined. Let f and $f^{\prime} \in[f] \Rightarrow$
F is a path homotopy b/w fond f^{\prime}.
$\Rightarrow h \circ F$ is a path-homoropy b/w hoof ont $h \cdot f^{\prime}$ and $(h \circ f) *(h \circ g)=h \cdot(f * g)$
\therefore the homomorphism is well-defined.
Theorem (Induced homomorphism satisfy "functorial properties").

1) $4 h:\left(x, x_{0}\right) \rightarrow\left(y, y_{0}\right)$ and $k:\left(y, y_{0}\right) \rightarrow\left(z, z_{0}\right)$ are continuous. Then

$$
(k \circ h)_{*}=k_{*} \circ h_{*}
$$

2) If $i:\left(x, x_{0}\right) \rightarrow\left(x, x_{0}\right)$ is the identity map then i_{*} is the identity homs.
Proof:- $\left.(k \circ h)_{*}([f])=[(k \cdot h) \cdot f]\right]$

$$
\begin{aligned}
\left(k_{*} \circ h_{*}\right)([f]) & =k_{*}\left(h_{*}[f]\right) \\
& =k_{*}([h \circ f])=\left[k_{0}(h \circ f)\right] \\
i_{*}([f])=[i \circ f] & =[f] \Rightarrow i_{*}: \pi_{1}\left(x, x_{0}\right) \neg \pi_{1}\left(x, x_{0}\right)
\end{aligned}
$$ is the identity home.

Corr. (fundamental group is a top. invariant)
If $h:\left(x, x_{0}\right) \rightarrow\left(y, y_{0}\right)$ is a homeomorphism then $h_{*}: \pi_{1}\left(x, x_{0}\right) \rightarrow \pi_{1}\left(y_{1} y_{0}\right)$ is an isomorphison.

Prof. Ret $R:\left(y, y_{0}\right) \rightarrow\left(x, x_{0}\right)$ be the inverse of h
Then $k_{*} \circ h_{*}=(k \cdot h)_{*}=(i)_{*}=i_{*}$ on

$$
h_{*} \circ k_{*}=(h \circ k)=(j)_{*}=j_{*}
$$

b Identity map of $\left(y, y_{0}\right)$.
$\Rightarrow h_{*}$ is an isomorphism w/ inverse R_{*}
Remarks:-

1) Converse is NOT true:- isomorphic fundamental groups \nRightarrow homeomorphic spaces. e.g. $\mathbb{R}, \mathbb{R}^{2}$ $\Phi^{n}, \mathbb{S}^{m}, n \neq m$.

$$
\begin{aligned}
& \pi_{1}\left(s^{n}, x_{0}\right)=0, n \geq 2 . \\
& \pi_{1}\left(s^{1}, x_{0}\right)=\mathbb{Z}
\end{aligned}
$$

2) Contrapositive is very useful. non-isomorphic fundamental groups \Rightarrow non-thom.

Covering Spaces (cf. Riemann Durfaces, complex gean.)
Def. Let $p: E \longrightarrow B$ is a continuous surjective map. $U c_{\text {open }} B$ is evenly covered by p if

$$
p^{-1}(u)=L_{\substack{V_{\text {open }}}}^{L_{\alpha} E}
$$

and $V \propto{ }_{I_{V_{\alpha}}} \rightarrow U$ is a homeomorphism. $\left\{V_{\alpha}\left\{\right.\right.$ is called a partition of $p^{-1}(U)$ into slices.

Def Let $p: E \rightarrow B$ is continuous \& anjective.
If every $b \in B$ has a nod U that is evenly covered by p, then p is a covering map and E is a covering space of B.

If $p: E \rightarrow B$ is a covering map then $f b \in B, P^{-1}(b)$ in ε has discrete topology.

Ex. 1) $i: X \rightarrow X$ identity map is always a covering map.
2) $E=X \times\{1,2, \ldots, n\}$
$p: E \rightarrow X \quad \omega / p(x, i)=x \quad f i$ is a covering mop.
3) $\quad p: \mathbb{R} \longrightarrow s^{1}$ given by

$$
p(x)=(\cos 2 \pi x, \sin 2 \pi x)
$$

is a covering map. \mathbb{R} is a covering space of S^{2}.
Remarks:- D A space can have multiple coming space and any covering space which is simply-connected is known as a universal cover.
R is a universal cover of S^{1}.
$[n, n+1]$

$$
p^{-1}(u)=2 \cdot V V_{n}, V_{n}=(n-1 / 4, n+1 / 4)
$$

each $V_{n} \subset \mathbb{R}$ open is mapped homeomorphically via p to U.

we can do the same thing for all the foul nods olescribed $\Rightarrow \mathbb{R}$ is a cowing space of S^{2}.
4) $p: \delta^{1} \rightarrow S^{1} \quad$ (Riemann Juffaceo). $p(z)=z^{n}, n \in \mathbb{Z}_{+}$is a covering map.

$$
\begin{gathered}
s^{\prime} \subset \mathbb{C} \\
\left\{z^{\prime \prime} \in \mathbb{C}|\quad| z \mid=1\right\} .
\end{gathered}
$$

Thy: Let $p: E \rightarrow B$ is a covering map. If B_{0} is a serbspace of B and is $E_{0}=p^{-1}\left(B_{0}\right)$ then $p_{0}: E_{0} \rightarrow B_{0}$ is a conning map. \rightarrow restricting p

The:- If $p: E \rightarrow B$ are covering maps

$$
p^{\prime}: E^{\prime} \rightarrow B^{\prime}
$$

Then $p \times p^{\prime}: E \times E^{\prime} \longrightarrow B \times B^{\prime}$ is a conning map.

$\Rightarrow \quad \mathbb{R} \times \mathbb{R}$ is a covering space for the torus.
Proof:- Let $b \in B, b^{\prime} \in B^{\prime}$ and $U a b, U^{\prime} a b^{\prime}$ be evenly covered nod by p and p ' respectively.
Let $\left\{V_{\alpha}\left\{\right.\right.$ and $\left\{V_{\alpha}^{\prime}\left\{\right.\right.$ be partitions of $p^{-1}(u)$ and
$\left(p^{\prime}\right)^{-1}\left(u^{\prime}\right)$ respectively.
Then $\left(p \times p^{\prime}\right)^{-1}\left(U \times U^{\prime}\right)=1 . J V_{\alpha} \times V_{\beta}^{\prime}$ and each $V_{\alpha} \times V_{\beta}$ is mapped homeomosphically onto $U \times U^{\prime}$ by $p \times p^{\prime} \Rightarrow E \times E^{\prime}$ is a convening space of $B \times B^{\prime}$
\qquad \bigcirc -

