Lecture 10

· no problem ression to day.

Fundamental Groups
Homotopy of paths
Defn Let
$$f, f': X \rightarrow Y$$
 be continuous maps.
 f is homotopic to $f'(f \subset f')$ is $\exists a$ continuous
map $F: X * I \rightarrow Y$ (here $I = [0,1]$) o.t.
 $F(x, o) = f(x)$ and $F(x, 1) = f'(x)$
 $\forall x \in X$.
 F is a homotopy the f and f' .
 Y
 f' is a homotopy the f and f' .
 f' is a constant map and $f \subset f'$ then we say
that f is mult homotopic

The relations ~ and ~p are equivalence relations. If f is a path then we'll denote its aquivalence class [f].

$$P_{rest}:= f = f, \quad F(x,t) = f(x)$$

$$f = pf, \quad F(p,t) = f(x).$$

$$f = f' = f' = f' = f \cdot if F$$
 is the homotopy
 b/ω fand f' , then $G_i(x,t) = F(x, 1-t)$
is a homotopy u/ω fand f' .
Let $f = f'$ and $f' = f''$. Want $f = f''$.

lies eil C.
Any two paths in C are path-homotopic to each
other.

$$x = R^2 | 505$$

Consider

$$f(s) = (con \pi s, z \pi \alpha s) = (2) f$$

$$g(s) = (con \pi s, 2\pi \alpha s) = (2) g$$

$$h(s) = (con \pi s, -z \pi \alpha s) = (2)$$

Product structure

$$\frac{\sum e_1}{\sum e_1} f \text{ is path in } X \text{ from } x \text{ to } x_1 \text{ ond } | e_1 g \text{ is}}$$

$$e_1 \text{ path in } X \text{ from } x_1 \text{ to } x_2 \text{ for } x_1 \text{ for } x_2 \text{ for } x_2 \text{ for } x_1 \text{ for } x_2 \text{ for } x_2 \text{ for } x_1 \text{ for } x_2 \text{ for } x_1 \text{ for } x_2 \text{ for } x_2 \text{ for } x_1 \text{ for } x_2 \text{ for } x_1 \text{ for } x_2 \text$$

h is a path in X from to x2.

$$[f] = \begin{cases} \forall : [0,1] \rightarrow X, \forall (0) = x_0 \\ \forall (i) = x_1 \end{cases}$$

ord $\forall = pf \begin{cases} \\ \end{bmatrix}$
$$[f] * [g] = [f*g] \qquad \text{Exercise } \end{cases}$$

notice :- [f] * [g] is not defined for every pair

- classes ' we must have f(1)=g(0).

2. (Evistance of sught/left identifier).
Given
$$x \in X$$
, let $e_X: I \longrightarrow K$ denote the constant
path $e_X(s) = x \cdot if$ f is a path from $x \circ to x$,
then
 $[f] * [e_{x_1}] = [f]$ and $[e_{x_0}] * [f] = [f]$.
3. (inverse) $f: I \longrightarrow X$, $f(o) = x_0$
 $f^{-1}(s) = f(i-s): I \longrightarrow X$, $f^{-1}(o) = x_1$
 $f^{-1}(s) = f(i-s): I \longrightarrow X$, $f^{-1}(o) = x_1$
 $f^{-1}(s) = f(i-s): I \longrightarrow X$, $f^{-1}(s) = x_0$
reverse path of f. And
 $[f] * [f^{-1}] = [e_{x_0}]$ and $[f^{-1}] * [f] = [e_{x_1}]$.

i: I→I identity map.
eo*I is a path ie I from 0 to 1.
∴ I is convex = P ∃ a path homotopy G
in I 400 i and eo*i. Then
fo G is a path homotopy in X 400
foi=f and fo (eo*i) = (foe)*(foi)

$$= e_{xo} \neq f.$$

$$= ve get (2).$$

(3). The vevere path of $i: I \rightarrow I$ is
 $i^{-1}(s) = 1 - \lambda$.
Then $i \neq i^{-1}$ is a path in I beginning at 0
and is ending at $0 = p$ $i \neq i^{-1} = peo.$ (I is convex)
Suppose H is the path hom. in I there eo and
 $i \neq i^{-1}$.
 $= f \circ H$ is a path homotopy the foe_o=exo
and $(f \circ i) \neq (f \circ i^{-1}) = f \neq f^{-1}$
reverse path as
defined above.

define the "inverse" of $[f] = [f^{-1}].$

proof of (1) later.

Pick a base point XOEX. We are only going to

look at loops in X at Xo, r.e., path in X which what at xo and at xo.

Zetⁿ Let X be a space,
$$x_0 \in X$$
. The set of
path homotopy classes of loops based at Xo
usith the operation $*$ as above is a group called
the fundamental group of X relative to the
base point Xo. We denote it by $TT_1(X, x_0)$.
 $TT_1(X, x_0) = \begin{bmatrix} ff \\ ff \end{bmatrix} \int f: I \rightarrow X u/f(0) = f(0) \\ = X_0 \\ \end{bmatrix}$
first homotopy group
the fundamental group of $*$.

We describe
$$f*g$$
 in a different way.
Let $[a, b]$ and $[c, d]$ be two intervals eic R.
Then $\exists ei unique p: [a, b] \longrightarrow [c, d]$
w/ $p(x) = mx + R$ pt: $p(q) = C$ and $p(b) = d$.
Call p the positive linear map ($p|m$)
of $[a, b] \longrightarrow [c, d]$.
Now, consider fing as follows:- On $[0, 1/2]$
 $f*g = fo p|m from $[0, 1/2]$ to $[0, 1/2]$
 $f*g = g \circ p|m from $[1/2, 1] \longrightarrow [0, 1]$
and on $[1/2, 1]$
 $f*g = g \circ p|m from $[1/2, 1] \longrightarrow [0, 1]$
Now let fig and h be paths six $x : t$.
 $f*(g*h) ord (f*g)*h$ are defined, i.e.s
 $f(1) = g(0) ord g(1) = h(0)$.
Solvine a "triple" product of the paths fig
and h as follows:-$$$

het a, b e I w/
$$0 < a < b < 1$$
. Define a path
 $k_{a,b}$ e X $0 >$
 $k_{a,b} = \begin{cases} f_{0} \text{ plm from } [0,a] + 0 [0,1]] \text{ on } [0,a] \\ g_{0} \text{ plm from } [a,b] + 0 [0,1] \text{ on } [a,b] \\ h_{0} \text{ plm from } [b,1] \text{ to } [0,1] \text{ on } [b,1] \end{cases}$

Claim: - If $c,d \in J \quad \omega / \quad 0 < c < d <)$ are another pair of points then $Ka_{1b} \stackrel{\sim}{=} k_{c,d}$. Notice that if we prove the daein then $f * (g * h) = Ka_{1b} \quad \omega / \quad g = 1/2, \quad b = 3/4$ and $(f * g) * h = K_{c,d} \quad \omega / \quad c = 1/2, \quad d = 1/2$ = $V \quad [f] * ([g] * [h]) = ([f] * [g]) * [h].$

