Lecture 10

- no problem ression today.

Fundamental Groups
Homotopy of paths
Defn Let $f, f^{\prime}: X \rightarrow Y$ be continuous maps. f is homotopic to $f^{\prime}\left(f \simeq f^{\prime}\right)$ is \exists a continuous $\operatorname{map} F: X_{x} I \rightarrow Y($ here $I=[0,1])$ sot.

$$
\begin{aligned}
& F(x, 0)=f(x) \text { and } F(x, 1)=f^{\prime}(x) \\
& \forall x \in X .
\end{aligned}
$$

F is a homotopy b/w f and f^{\prime}.
x

If f^{\prime} is a constant map and $f \simeq f^{\prime}$ then we say that f is null homotopic.

f is a path from x_{0} to x_{1} is $f:[0, I] \longrightarrow X$ continuous and $f(0)=x_{0}$

$$
f(1)=x_{1}
$$

Seen Two paths $f, f^{\prime}: I \rightarrow X$ are said to be path-homotopic if they have the same initial point x_{0} and same final point x, and if \exists continuous map $F: I \times I \longrightarrow X$ set.

$$
\begin{array}{ll}
F(s, 0)=f(s) & \text { and } F(s, 1)=f^{\prime}(s) \\
F(0, t)=x_{0} & \text { and } F(1, t)=x_{1}
\end{array}
$$

$f s \in I, t \in I$. We write $f \simeq_{p} f^{\prime}$.

The The relations \simeq and \simeq_{p} are equivalence relations. If f is a path then weill denote its equivalence class [f].

$$
\begin{array}{ll}
f=f, & F(x, t)=f(x) \\
f=p f, & F(p, t)=f(s) .
\end{array}
$$

$f \simeq f^{\prime} \Rightarrow f^{\prime} \simeq f$. If F is the homotopy
b/w find f^{\prime}, then $G(x, t)=F(x, 1-t)$ is a homotopy b/w f and f^{\prime}.
Let $f \simeq f^{\prime}$ and $f^{\prime} \simeq f^{\prime \prime}$. Want $f \simeq f^{\prime \prime}$.

Define $G: X \times I \longrightarrow Y$ as

$$
G(x, t)= \begin{cases}F(x, 2 t) & \text { for } t \in[0,1 / 2] \\ F^{\prime}(x, 2 z-1) & \text { for } t \in[1 / 2,1]\end{cases}
$$

Ex. $f, g: x \rightarrow \mathbb{R}^{2}$
Then $f \simeq g$.

$$
F(x, t)=(1-t) f(x)+t g(x)
$$

If f, g one paths in \mathbb{R}^{2} from x_{0} to x_{1} then $f=p g$.

Lat C be any convex subspace of \mathbb{R}^{n} the straight line joining $a, b \in G$
lies eric.
Any two paths is C are poth-homotopic to each other.
Gi. $\quad x=\mathbb{R}^{3} \mid\{0\}$
Consider

$$
\begin{aligned}
& f(s)=(\cos \pi s,-\sin \pi s) \\
& g(s)=(\cos \pi s, 2 \sin \pi s) \\
& h(s)=(\cos \pi s,-\sin \pi s)
\end{aligned}
$$

Product structure
Def f is path in X from x_{0} to x, and let g is a path in X from x_{1} to x_{2}.
We define the product
 $f * g=h$ oo

$$
\begin{aligned}
& h * g=h(s)= \begin{cases}f(25), & s \in[0,1 / 2] \\
g(2 s-1), & s \in[1 / 2,1] \quad \text { concatenation of } \\
h(s)\end{cases}
\end{aligned}
$$

h is a path in X from x_{0} to x_{2}.

$$
[f]=\left\{\begin{aligned}
\gamma:[0,1] \rightarrow X, \gamma(0)=x_{0} \\
\gamma(1)=x_{1}
\end{aligned}\right.
$$

and $\gamma \simeq p f\{$

$$
[f] *[g]=[f * g] \text { Exercise! }
$$

notice:- $[f] *[g]$ is not defined for every pair
-classes we must have $f(1)=g(0)$.

Theorem:- The operation * has lt following properties:-

1) (Associative) If $[f] *([g] *[n])$ is elefined. then so is $([f] *[g]) *[n]$ and

$$
[f] *([g] \times[h])=([f] *[g]) *[h] .
$$

2. (Existence of right/left identities).

Given $x \in X$, let $e_{x}: I \rightarrow X$ denote the constant path $e_{x}(s)=x$. If f is a path from x_{0} tox,
then

$$
[f] *\left[e_{x_{1}}\right]=[f] \text { and }\left[e_{x_{0}}\right] *[f]=[f] \text {. }
$$

3. (inverse) $\quad f: I \rightarrow X, \begin{aligned} & f(0)=x_{0} \\ & f(1)=x_{1}\end{aligned}$

$$
\begin{array}{ll}
\left.f^{-1}(s)=f(1-s): I \rightarrow X: \begin{array}{l}
f^{-1}(0)
\end{array}\right)=x_{1} \\
& f^{-1}(1)=x_{0}
\end{array}
$$

reverse path of f. And

$$
[f] *\left[f^{-1}\right]=\left[e_{x_{0}}\right] \text { and }\left[f^{-1}\right] *[f]=\left[e_{x_{1}}\right] \text {. }
$$

Proof:- $R: X \rightarrow Y$ continuous
F is a path homotopy is e X b/w f sind f^{\prime} then $k \circ F$ is a path hom. in $y, b / \omega$ k०f, $k \circ f^{\prime}$. and
$f(1)=g(0)$ then

$$
k \circ(f * g)=(k \circ f) *(k \circ g) .
$$

Let's look at 2) and 3).
l_{0} is the constant path at $0 \in I$.
$i: I \rightarrow I$ ielentity map.
$e_{0} * I$ is a path ie I from 0 to 1 .
$\because I$ is convex $\Rightarrow \exists$ a path homotopy G in I b/w i and $e_{0} * i$. Then
$f \circ G$ is a path homology in X b/ ω
$f_{\circ i}=f$ and $f_{\circ}\left(e_{0} * i\right)=\left(f \circ e_{0}\right) *(f \circ i)$

$$
=e_{x_{0}} * f .
$$

\Rightarrow we get (2).
(3). The reverse path of $i: I \rightarrow I$ is $i^{-1}(s)=1-s:$
Then $i * i^{-1}$ is a path ie I beginning at 0 and is ending at $0 . \Rightarrow i * i^{-1} \simeq p e_{0}$. (I is convex) Suppose H is the path home. in I b/w es and $\stackrel{i \times i^{-1}}{\Rightarrow}$ for is a path homotopy b/co $f_{0} e_{0}=e_{x_{0}}$ and $(f \circ i) *\left(f \circ i^{-1}\right)=f *{\underset{\sim}{r e v e r s e ~}}_{f^{-1}}$ defined above.
define the "inverse" of $[f]=\left[f^{-1}\right]$.
proof of (1) later.

Pick a base point $x_{0} \in X$. We are only going to
look at loops in X at X_{0}, iv., path is X which wotart at x_{0} and and at x_{0}.

Sefn Let X be space, $x_{0} \in X$. The set of path homotopy classes of loops based at x_{0} with the operation * as above is a group called the fundamental group of X relative to the base point x_{0}. We denote it by $\Pi_{1}\left(X, x_{0}\right)$.

Proof of associativity of *.

We describe $f * g$ in a different way.
Let $[a, b]$ and $[c, a]$ be two intervals ie \mathbb{R}.
Then \exists a unique $p:[a, b] \longrightarrow[c, e l]$ $w / p(x)=m x+R$ st. $p(a)=C$ and $p(b)=d$. Call p the positive linearmalp (p / m) of $[a, b] \rightarrow[c, d]$:
Now, consider $f_{* g}$ as follows:- On $[0,1 / 2]$

$$
f * g=f 0 \text { plo from }[0,1 / 2] \text { to }[0,1]
$$

and on $[1 / 2,1]$
$f_{*} g=g$. flem from $[1 / 2,1] \rightarrow[0,1]$
Now let f, g and h be paths in X st. $f *(g * h)$ and $(f * g) * h$ are definecl, ide. o

$$
f(1)=g(0) \text { and } g(1)=h(0)
$$

Define a "triple" product of the paths fig and h as follows:-

Let $a, b \in I$ w/ $0<a<b<1$. Define a path $k_{a_{1 b}}$ ie X os

$$
R_{a, b}=\left\{\begin{array}{l}
\text { foplm from }[0, a] \text { to }[0,1] \text { on } \\
\text { goplen from }[a, b] \text { to }[0,1] \text { on }[a, a] \\
\text { hoplm from }[b, 1] \text { to }[0,1] \text { on }[b, 1]
\end{array}\right.
$$

Claim:- If $c, d \in I \quad \omega / \quad 0<c<d<1$ are another pair of points then $K_{a, b} \simeq_{p} K_{c, d}$.

Notice that if we prove the cain then

$$
f_{*}(g \times h)=k_{a, b} \quad w / a=1 / 2, b=3 / 4
$$

and $(f * g) * h=k_{c, d} \quad w / c=1 / 4, d=1 / 2$

$$
\Rightarrow[f] *([g] \times[h])=([f] *[g]) *[h] .
$$

Proof of the Claim:-
bet $p: I \longrightarrow I$ be the map as described below.

i.e., $\quad p_{[0, a]}=$ plm from $[0, a]$ to $[0, c]$

$$
\left.\right|_{[a, b]}=\text { plm from }[a, b] \text { to }[c, d]
$$

$k_{[\mid, 1]}=$ plm from $[b, 1]$ to $[d, 1]$.
Then $k_{c, b} \circ p=k_{Q, b}$
Now : p:I $\rightarrow I$ and I is convex \Rightarrow \exists a path homotopy P in I b/w pand $i: I \rightarrow I$.
Then $K_{c, d}$ " P is a path homotopy in X b/w $k_{a, b}$ and $k_{c, 0}$.

