(Problem Session 6

Prob. Det 5

Want:- h(x) = x for some $x \in S^1$.

from the theorem in lec. In extends to a continuous

from the theorem in lec.
$$h$$
 extends so S^1 ($k_1 S^1 = h$)

map $k: B^2 \longrightarrow S^1$ ($k_1 S^1 = h$)

 $j \circ k: B^2 \longrightarrow B^2$

continuous.

:. by Browner's f.p.t. 3 x \(B^2 \) \(\omega \).

$$J(k(x)) = X = D \quad k(x) = X = D \quad x \in S$$

 $x \in S' \quad \text{w} \quad k(x) = x$ VA

Wont: 3 xe S' with h(x) = -x.

is h is mullhomotopic => 3 x ∈ S' wot.

$$h \approx e_x = P$$
 homotopy 11.
 $s + H(s, o) = h(s)$ and $H(s, i) = e_x(s) = x$.
 $s + H(s, o) = h(s)$ and $d \cdot e_x = A$

=D X. H is a hom. Wo X.h and X.ex=-x

=> doh ~ e-x doh: S'-s' is nullhamotopic t.a 'Z > y E (= hob tried possif & E (= d(h(u)) = U = h(u) = V = h(u) = -y. is the required point.

h: sn_sm antipode-preserving if $\mu(-x) = -\mu(x) \quad \text{ff} \quad x \in \mathbb{Z}_{2},$

If h: s' -s' is cont. and omtipade-preserving them h is not null homotopic.

\$ 9:52 S', 9 omtipode-precenting. Bonsuk-Ulam Hm $f: S^2 - \mathbb{R}^2 \ni x \in S^2 \bowtie t$.

(3) (a) solid toma B2x51

defor retracts to 5'

 $\therefore \Pi_1 \left(B^2 \times S^1, \times_0 \right) \cong \left(\mathbb{Z}, + \right).$

 $\pi_1 \left(T^2 \S \flat \S, \times_o \right) \cong \pi_1(8)$

non-aperion

 $Z \times Z = Z \oplus Z$ (abelian)

- (c) cylinder s'riR ~ II.
- d) R³ / nonnegatuie x, y, zaxes.

 1R {>{ {>}} {9}} ~ 00 or 0

$$h: S' \to S' \text{ cont.}$$

$$h_*: \pi_1(S^1, \times_0) \to \pi_1(S', \times_1)$$

$$h_*(Y(X_0)) = d \cdot Y(X_1)$$
degree of h .

$$h: S^{n} \longrightarrow S^{n}$$

$$h: H_{n}(S^{n}) \longrightarrow H_{n}(S^{n})$$

$$n-H_{n} homology$$

$$15)$$

$$7$$

(5) (a) the Problem repairon.

Let h: S' - S' w/ h(x0) = z1 ∈ S'

Suppose y ∈ S' and let B be a both from

xo to yo. Let y = h(yo). Then B = hoB is a

path from xitoy;

$$\int_{A} = \left[B' \right]^{-1} * \int_{X'} * \left[B \right]'$$

$$h_{*}(\mathcal{X}_{0}) = h_{*}([\beta]^{-1} * \mathcal{X}_{0} * [\beta])$$

$$= [\beta']^{-1} * h_{*}(\mathcal{X}_{0}) * [\beta'] (\cdot \cdot \beta' = h_{0} \beta)$$

$$= [\beta']^{-1} * d \cdot \mathcal{X}_{0} * [\beta']$$

- :. the degree is independent of the choice of 20.
- (b) This just follows from the lemma which we proved eve the lecture that if $h \subset k$ w/ $h(x_0) = R(x_0)$, then $h_* = R_*$.

This is an important fact and we will use this frequently in applications later.

d) : the constant map maps any loop in S' to the constant loop $C_C \Rightarrow$ the generator $[V_{X_0}] \in Tr_1(S', 0) \longmapsto [C_C] \Rightarrow h_*([r(x_0)]) = 0.$ $Tr_1(S', 0) \mapsto [C_C] \Rightarrow h_*([r(x_0)]) = 0.$

the identity map enduces the identity homomorphism $= p \quad \text{iol}_{*}(r(xo)) = 1 \cdot r(xo)$ $= p \quad \text{olg}(rid) = 1.$

for
$$P(x_1, x_2) = (x_1, -x_2)$$

if one consider the standard covering map
 $p: \mathbb{R} \longrightarrow S'$ by $p(x) = (\cos \pi x, \sin \pi x)$
then the generator $[r]$ is $f(x) = (\cos \pi x, \sin \pi x)$
: $(P \circ Y)(x) = (\cos \pi x, -\sin \pi x)$
 $= f(1-x) = f^{-1}(x)$
: under P_{+} , the generator $[r]$ is mapped to $[r]^{-1} = P \quad d = -1$.

h(y) = y^n . here we are $5' \subset C$ $w' S' = \frac{3}{3} \in C \mid |3| = 1$?. Then following the same notation as above. the generator $8(x) = e^{2\pi i x}$. =D $ho Y(x) = e^{2\pi i x}$. = $e^{2\pi i x}$. $e^{2\pi i x}$. h, is wrapped around the circle n times.

= p oleg h = n.