Problem Session 6

Prob. set 5
(1) $h: s^{\prime} \rightarrow s^{\prime}$ is nullhomotopic.

Want:- $h(x)=x$ for wame $x \in S^{1}$.
from the theorem ie lc. h extends to a continuous $\operatorname{map} k: B^{2} \longrightarrow s_{j}^{\prime}(k|s|=h)$

$$
j 0 k: B^{2} \rightarrow B^{2}
$$

continuous.
\therefore by Browner's f.p.t. $\exists x \in B^{2}$ sit

$$
\begin{aligned}
& \text { is f.p.t. } \exists x \in S \\
& j(R(x))=x \Rightarrow \begin{array}{l}
R(x)=x=0 x \in s^{\prime} \\
0 \\
s^{\prime}
\end{array}
\end{aligned}
$$

$\therefore \quad x \in S^{\prime}$ w/ $\quad k(x)=x$

$$
\begin{equation*}
h^{\prime \prime}(x)=x . \tag{10}
\end{equation*}
$$

Wont: $\exists x \in S^{\prime}$ wit $h(x)=-x$.

$$
\begin{aligned}
& \exists x \in S \\
& \alpha: S^{\prime} \rightarrow S^{\prime} \text {, i.e. } \alpha(x)=-x . \\
& \Rightarrow \exists x \in
\end{aligned}
$$

$\because h$ is mullhomotopic $\Rightarrow \exists x \in S^{\prime}$ sh.
$h \simeq e_{x} \Rightarrow$ homotopy $H: S^{\prime} \times I=S^{\prime}$
st $H(s, 0)=h(s) \mathrm{om}^{2} d H(s, 1)=e_{x}(s)=x$.
$\Rightarrow \quad \alpha_{0} H$ is a ham. b/w $\alpha \cdot h$ and $\alpha_{0} e_{x}=-x$
$\Rightarrow \alpha_{0} h \simeq e_{-x} \quad \alpha_{0} h: S^{\prime} \longrightarrow S^{\prime}$ is nullhomotopic
$\Rightarrow \exists$ a fixed point $\alpha \cdot h \Rightarrow \exists y \in S^{\prime}$ s.t

$$
\begin{aligned}
& \Rightarrow \exists \text { a fixed point } \\
& \alpha(h(y))=y \Rightarrow h(y)=y \Rightarrow h(y)=-y .
\end{aligned}
$$

io y is the requined point.
(2) $h: s^{n} \longrightarrow s^{m}$ antipode-preserving if

$$
h(-x)=-h(x) \quad \& x \in S^{n}
$$

If $h: S^{\prime} \rightarrow S^{\prime}$ is cont. and antipode-preserving then h is not nullhomotopic.
$\nRightarrow g: S^{2} \rightarrow S^{\prime}, g$ ontipode-preserving.
Bonsuk-Ulamtth $f: S^{2} \rightarrow \mathbb{R}^{2} \exists x \in S^{2}$ w.d.

$$
f(x)=f(-x) \text {. }
$$

(3) (a) solid tones $B^{2} \times S^{1}$

defor vetracts to S^{\prime}

$$
\therefore \pi_{1}\left(B^{2} \times s^{1}, x_{0}\right) \cong(\mathbb{Z},+) .
$$

(b) $T^{2}-\{p\}$

$$
\pi_{1}\left(T^{2}-\{p\}, x_{0}\right) \cong \pi_{1}(8)
$$ non-abelian

$$
\mathbb{Z} \times \mathbb{Z}=\mathbb{Z} \oplus \mathbb{Z} \text { (abelion) }
$$

(c) cylinder $s^{\prime} \times \mathbb{R} \simeq \mathbb{Z}$.
d) $\mathbb{R}^{3} \backslash$ non-negatuie x, y, z axes.

$$
\mathbb{R}^{2}-\{p\{-\{q\} \sim O \text { or } \theta
$$

x

$$
\mathbb{R}^{3}-\{0\}-s^{2} \subset \mathbb{R}^{3}
$$

$X \longmapsto \frac{x}{\|x\|} \quad$ homotopy $b / \omega X$ and

$$
S^{2}-\{(1,0,0),(0,1,0)
$$

steroographic
pogection

$$
\begin{aligned}
& S^{3}-\{p\} \simeq \mathbb{R}^{2}-\{q\}-\{r\} \\
& -\{q\}-\left\{r \left\{\begin{array}{l}
\text { prigection } \\
\\
\end{array} \quad \begin{array}{l}
\text { का }
\end{array}(\delta)=\pi_{1}(\theta) .\right.\right.
\end{aligned}
$$

$$
(0,0,1)\}
$$

(e) $\{x \mid\|x\|>1\} \subset \mathbb{R}^{2}$
(f)

$$
\text { fe) } \begin{gathered}
S^{\prime} \cup\left(\mathbb{R}_{+} \times 0\right) \subset \mathbb{R}^{2} \simeq S^{\prime} \xrightarrow[(\mathbb{R} \times 0) \subset \mathbb{R}^{2(11}]{ }+1,0 \text { space }
\end{gathered}
$$

(5)

$$
\begin{aligned}
& h: s^{\prime}-s^{\prime} \text { cont. } \\
& h_{*}: \pi_{1}\left(s^{\prime}, x_{0}\right) \rightarrow \pi_{1}\left(s^{\prime}, x_{1}\right) \\
& h_{*}\left(r\left(x_{0}\right)\right)=\operatorname{d.r}_{1} 11\left(x_{1}\right) \\
& \text { deme of } h .
\end{aligned}
$$

degree of h.

$$
\begin{aligned}
& h: S^{n} \longrightarrow S^{n} \\
& h: \begin{array}{l}
H_{n}\left(s^{n}\right) \rightarrow H_{n}\left(s^{n}\right) \\
n-+ \text { homology } \\
\text { is) } \\
\prod
\end{array} \quad \mathbb{Z}
\end{aligned}
$$

(5) This is a cleaner version of what I wrote deming
(a) the Problem session.

Let $h: S^{\prime} \longrightarrow S^{\prime} w / h\left(x_{0}\right)=x_{1} \in S^{\prime}$
suppose $y_{0} \in S^{\prime}$ and let β be a bath from x_{0} to y_{0}. Let $y_{1}=h\left(y_{0}\right)$. Then $\beta^{\prime}=h_{0} \beta$ is a path from x_{1} to y_{1}.

$$
\begin{aligned}
\because \gamma_{y_{1}} & =\left[\beta^{\prime}\right]^{-1} * \gamma_{x_{1}} *[\beta]^{\prime} \\
\therefore h_{*}\left(\gamma_{y_{0}}\right) & =h_{*}\left([\beta]^{-1} * \gamma_{x_{0}} *[\beta]\right) \\
& =\left[\beta^{\prime}\right]^{-1} * h_{*}\left(\gamma_{x_{0}}\right) *\left[\beta^{\prime}\right]\left(\because \beta^{\prime}=h_{0} \beta\right) \\
& =\left[\beta^{\prime}\right]^{-1} * d \cdot \gamma_{x_{1}} *\left[\beta^{\prime}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =d\left(\left[\beta^{\prime}\right]^{-1} * \gamma_{x_{1}} *\left[\beta^{\prime}\right]\right) \\
& =d \cdot \gamma_{y_{1}}
\end{aligned}
$$

\therefore the degree is independent of the choice of x_{0}.
(b) This just follow from the lemma which we proved ire the lecture that if $h \simeq R \omega /$ $h\left(x_{0}\right)=R\left(x_{0}\right)$, then $h_{*}=R_{*}$.
This is an important fact and we will use this frequently in applications later.
d) \because the constant map maps any looper S^{\prime} to the constant loop $e_{c} \Rightarrow$ the generator

$$
\begin{aligned}
& \text { to the constant 100p }\left[e_{c}\right] \Rightarrow h_{*}\left(\left[\gamma\left(x_{0}\right)\right]\right)=0 . \\
& \left.=\gamma_{1}\right] \in \pi_{1}\left(s_{1}^{\prime}, 0\right) \longmapsto \\
& =0 \text { deg }=0 .
\end{aligned}
$$

the identity map induces the identify hamomo-
-rphism

$$
\begin{aligned}
& \Rightarrow \quad i d_{*}\left(\gamma\left(x_{0}\right)\right)=1 \cdot \gamma\left(x_{0}\right) \\
& \Rightarrow \quad \operatorname{deg}(i d)=1 .
\end{aligned}
$$

for $P\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right)$
in are consider the standard covering map
$p: \mathbb{R}-S^{\prime}$ by $p(x)=(\cos 2 \pi x, \sin 2 \pi x)$
then the generator $[r]$ is $\gamma(x)=(\cos 2 \pi x, \sin 2 \pi x)$

$$
\begin{aligned}
\therefore \quad(\rho \circ \gamma)(x) & =(\cos 2 \pi x,-\sin 2 \pi x) \\
& =\gamma(1-x)=\gamma^{-1}(x)
\end{aligned}
$$

\therefore under P_{*}, the generator $[r]$ is mapped to

$$
[r]^{-1} \Rightarrow d=-1 .
$$

$$
h(z)=z^{n}
$$

here we are $s^{\prime} \in \mathbb{C} w / s^{\prime}=\{z \in \mathbb{C}| | z \mid=1\}$.
Then following the same notation i as above. the generator $\gamma(x)=e^{2 \pi i x \text {. }}$

$$
\begin{aligned}
\Rightarrow \quad \operatorname{for}(x) & =e^{2 \pi i n x} \\
& =\underbrace{e^{2 \pi i x} \cdot e^{2 \pi i x} \cdots e^{2 \pi i x}}_{n \text {-times }}
\end{aligned}
$$

\therefore io the generator under the homomorphism h_{*} is wrapped around the circle n times.

$$
=0 \quad \log h=n .
$$

四

$$
0 \longrightarrow x \longrightarrow 0
$$

