(Problem Dession 6

(Problem Det 4 (1) $x_0, x_1 \in X$ path connected. $\hat{\alpha}([f]) = [\alpha]^{-1} * [f] * [\alpha]$ coshere $x_0 \land$ usuppose TTI (X x0) is abelian. $\hat{\alpha} = \hat{\beta}$, $[f] \in \Pi_1(x, x_0)$ Want:- $\hat{\alpha}([f]) = [\alpha]^{-1} * [f] * [\alpha]$ = [a]-'* [f] * [B] * [B] * [B]-1 * [a] = ([\$\alphi] + [\$\begin{aligned} & [\$\alpha] & ([\$\begin{aligned} & [\$\alpha] & ([\$\begin{aligned} & [\$\alpha] & ([\$\alpha] & ([\$\alpha] & ([\$\alpha] & [\$\alpha] & ([\$\alpha] & ([\$\ alpha] = [6] * [v] * [v] * [f] * [f] $= \left[c_{j} \right]_{j} = \left[c_{j} \right]_{j} = \left[c_{j} \right]_{j} = \left[c_{j} \right]_{j}$, [f], [g] επ,(X ×) for the other direction [f] * [g] = [g] * [f] (Want)and α is a path $\frac{1}{2}/\alpha 5$ to $\frac{1}{2}$ then $f \neq \alpha$ is again a path $\frac{1}{2}/\alpha 5$ to $\frac{1}{2}$ and $\frac{1}{2}$. $f \neq \alpha$ ([g]) = α ([g])

=
$$P$$
 $[f * \alpha]^{-1} * [g] * [f * \alpha] = [\alpha]^{-1} * [g] * [\alpha]$
= P $[\alpha]^{-1} * [f]^{-1} * [g] * [f] * [\alpha] = [\alpha]^{-1} * [g] * [\alpha]$
= P $[f]^{-1} * [g] * [f] = [g]$
= P $[f]^{-1} * [g] * [f] = [g]$
= P $T_1(X, x_0)$ is obelian.
= P P P

$$\begin{array}{ccc} (\mathcal{P}, \mathcal{P}) & = & \mathcal{T}_{1} \left(X \times X \right), (\mathcal{P}, \mathcal{P}) \end{array} \\ (\mathcal{P}, \mathcal{P}) & = & \mathcal{T}_{1} \left(X \times Y \right), (\mathcal{P}, \mathcal{P}) \end{array} \\ (\mathcal{P}, \mathcal{P}) & = & \mathcal{P}_{2} : X \times Y - Y \\ (\mathcal{P}, \mathcal{P}) & = & \mathcal{P}_{2} : X \times Y - Y \\ (\mathcal{P}, \mathcal{P}) & = & \mathcal{P}_{2} : X \times Y - Y \\ (\mathcal{P}, \mathcal{P}) & = & \mathcal{P}_{2} : X \times Y - Y \end{array}$$

(3)
$$A \subset X$$
 $\pi: X \longrightarrow A$ $a \to b$ $\mathfrak{P}_{1A} = id_A$.
a) $a_0 \in A$ then $\mathfrak{P}_{**}: \pi_1(X, a_0) \longrightarrow \pi_1(A, a_0)$
is surjective:
b) $i: A \longrightarrow X$ $a \to h$ $i_*: \pi_1(A) \longrightarrow \pi_1(X)$
is injective.
 $\mathfrak{P}_{0}\circ i: A \longrightarrow A$ is the identity map of
 $A \cdot \mathfrak{P}_{0}\circ i = id_A$
 $\Longrightarrow \mathfrak{P}_{0}\circ i_{**} = \mathfrak{P}_{1*}\circ i_{**} = id_{**}\circ \mathfrak{P}_{1*}(A, a_0).$
If $\mathbb{F}_{1} \subseteq \mathfrak{T}_{1}(A, a_0)$ then $\mathfrak{P}_{*}(i_{*}(\mathbb{F}_{1})) = \mathbb{F}_{1}$

$$= \mathcal{D} \left[\frac{1}{2} \cdot \mathcal{K} \right] = \left[e_{b} \right]$$

by the path lifting lemme, we get x=J
by the path lifting lemme, we get x=J
b is a homeomorphism.
$$\frac{1}{2} = \frac{1}{2} \cdot \frac{$$

(6)
$$p: \mathbb{R}_{+} \longrightarrow S^{1}$$

 $p(x) = (coornx, cohornx)$
(1) (2) (3) (4) Around the point boes'
 $point or experiments or experiments or experiments or experiments or experiments or experiments of the point of the point boes of the point of$