Problem Session 4

If {Xa } is a collection of Tychonoff's Theorem top. spaces w/ Xa is compact & are I then $X = \prod_{\alpha \in T} X_{\alpha}$ is compact in the product topology. Remark :- X is not nec. compact in the box topd ogy. Finite product of compact spaces is compact If X and I are compact then so is X * V. Step1 Suppose X and Y are top. spaces of Y compact. Let xo EX. Consider the slice XoxY and let N be an open set in X=Y which contains I a mbd W of xo in X s.t. WxYCN. 20 × Y. Then tube about 26× Y K×X w

Theorem has X be a top space. Then X is compact
The for every collection
$$\mathcal{G}$$
 of closed sets in X
having the finp, $\bigcap C \neq \phi$.
 $\mathcal{Ce}_{\mathcal{G}}$
Proof: If \mathcal{A} is a collection of subsets in X then
 $\mathcal{G} = \int X |A| |A \in \mathcal{A} \\$ satisfies:
I) \mathcal{A} is a collection of open sets an \mathcal{B} is collection
of closed rasts.
2) \mathcal{A} cours $X \xrightarrow{d} \bigcap_{C \in \mathcal{G}} G = \phi$.
 $\mathcal{X} \subset \bigcup A \xrightarrow{d} \bigcap_{A \in \mathcal{A}} G \xrightarrow{d} \bigcap_{C \in \mathcal{G}} f \stackrel{d}{=} \dots$
 $A \in \mathcal{A} \xrightarrow{d} A \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{A} \xrightarrow{d} \bigcap_{A \in \mathcal{A}} f \stackrel{d}{=} \dots$
 $A = \mathcal{$

b) If
$$A \subset X$$
 s.+ $A \cap D \neq \phi$ $\forall D \in X \Rightarrow A \in A$.
Proof of b). Not A be as in b).
Define $\mathcal{E} = \mathcal{B} \cup \{A\}, \supset \mathcal{R}$.
We show that \mathcal{E} also satisfies the f.i. $\phi \Rightarrow$
by the maximality of \mathcal{B} , $\mathcal{E} = \mathcal{B} \Rightarrow A \in \mathcal{R}$.
by the maximality of \mathcal{B} , $\mathcal{E} = \mathcal{B} \Rightarrow A \in \mathcal{R}$.
by $E_1, E_2, \dots, E_n \in \mathcal{E}_n$. If $E_i \neq A, i=1,\dots, n$
bet $E_1, E_2, \dots, E_n \in \mathcal{E}_n$. If $E_i \neq A, i=1,\dots, n$
 $E_i \in \mathcal{R} \Rightarrow \mathcal{D}$ $\bigcap E_i \neq \phi$ as \mathcal{R} satisfies
fig.
If $E_1 = A$
then $A \cap E_2 \cap E_3 \dots \cap E_n \neq \phi$ as
 $E_2 \cap E_3 \cap \dots \cap E_n \in \mathcal{R}$ (part (a))
 $= \mathcal{E} = \mathcal{E}$ satisfies frip $\Rightarrow \mathcal{E} = \mathcal{R}$.

Proof of Tychonoff's Theorem
X = TT X is compact in the product top.
aFI
het a collection of subsets of X having the firs.
We'll prove that
$$\Pi \overline{A} \neq \Phi \implies X$$
 is compact.
AFO

By damma A = 2 S of subsets of X activitying
fip: ,
$$\mathcal{R} \supset \mathcal{A}_{P}$$
. We'll prove
 $\mathcal{R} \supset \neq \phi$. ()
 $\mathcal{R} \supset \varphi$. ()
 $\mathcal{R} \supset \varphi$ of subsets of Xa
has fip. as \mathcal{R} has fip.
 $\mathcal{R} \supset \varphi$. ()
 $\mathcal{R} \supset \varphi$.
 $\mathcal{R} \supset \varphi$.

 $\pi_{\mathcal{B}}^{-1}(U_{\mathcal{B}})\cap D \neq \emptyset$ \mathcal{H} $\mathcal{D}\in\mathcal{B}.$ = by pant b) of demma B use know that every subbasis element containing x must lie in R. => by part a) of demma B. every basis element of X which contains & also belong to R. · R has f.i.p = D every basis element in X which contains & intersects every element of R. = D XED, & DER = D proves () =D the theorem. D