Problem Session Z

Problem Set 3
(1) compact and sequentially compact subsets of $\mathbb{R}_{\operatorname{cof}}$. All subsets are compact.
$A \subset R$. Suppose $\left\{U_{\alpha}\right\}_{\alpha \in I}$ be an open cover of $A \Rightarrow U_{\alpha}$ is open $\Rightarrow U_{d}^{c}$ is a finite set. $\Rightarrow \quad A \backslash U_{\alpha}$ hoo only finitely many elements $x_{1}, x_{2}, \ldots, x_{n}$. Choose $U_{x_{i}} \in\left\{U_{\alpha} \xi_{\alpha \in I}\right.$ s.t. $x_{i} \in U_{x_{i}}$. Then $U_{\alpha} \cup\left\{U_{x_{i}}\left\{\sum_{i=1}^{n}\right.\right.$ is a finite subconer of $A . \Rightarrow A$ is compact.

All subsets are sequentially compact.
(2) Every compact subspace of a Hausdorff is closed.
X is mon-Haurdorff but a subspace of $X i s$

$$
\begin{aligned}
& \text { Hausdorff. } \quad \sigma=\left\{\begin{aligned}
x, \Phi, & \{a\},\{b\} \\
& \{a, b\}\{
\end{aligned}\right.
\end{aligned}
$$

$$
A=\{a, b\}
$$

Line w／two origins－Non－Hawdorff space．

\widetilde{x} is the line $\omega /$ two origins and is non－llauddorff． as any open intervals containing $(0,0) \neq(0,1)$ must intersect non－愔vially as allother points are identified．
（3）$A \subset X \quad r: X \longrightarrow A$ continuous

$$
r(a)=a \quad \forall a \in A \text {. }
$$

r is a quotient map．
U is open in $A \Longleftrightarrow r^{-1}(U)$ is ореи ii X ．
suppose U is open $\operatorname{li} A \Rightarrow r^{-1}(0)$ is open hi X as r is continuous.
Assume for some $U \subset A, M^{-1}(U)$ is open in x. We must prove $U=A \cap r^{-1}(0)$ is open iv A.
$\Rightarrow r$ is a quotient map.
(4) X mess be T_{1} but not T_{2}.
$\mathbb{R}_{\text {col }}$ is a T_{1} space and is non-Handorfe.

$$
x \notin U_{y} \quad \text { and } y \notin U_{x}
$$

Let $x, y \in \mathbb{R}$ Let U open containing x.
U^{C} is finite. so choose $U_{x}=\mathbb{R} \backslash\{y\}$.
$x \in U_{x}$ and $\mathbb{R} \backslash\left\{x\left\{=U_{y}\right.\right.$ is open sit. $y \in U_{y}$
clearly $x \notin U_{y}$ and $y \in U_{x}$.
$\mathbb{R}_{\text {oof }}$ is not τ_{2}.

$$
\stackrel{x}{x}_{\hat{U}_{x}} \cap \stackrel{y}{0}_{\ddot{U}_{y}}^{c} \neq \phi \text { as }
$$

R is uncountable and $U_{x}{ }^{c}$ ans U_{y}^{c} are finite.
(5). $X / A=X / \sim$

$$
\mathbb{D}^{n} / S^{n-1} \cong S^{n}
$$

$$
f: \mathbb{D}^{n} / \delta^{n-1} g=\frac{x}{1-\|x\|} \quad\left\{\begin{array}{l}
\mathbb{R}^{n} \\
\tilde{s}^{n} \\
f \quad \text { stereographic projection }
\end{array} \quad f=\operatorname{sog}\right.
$$

define $f\left(s^{n-1}\right)=n \rightarrow$ north pole of s^{n}.

$$
\tilde{f}: D^{n} / s^{n-1} \longrightarrow s^{n}
$$

from the theorem discussed ie class, \hat{f} is a homeomorphism.
(6) a) x is Hausdorff $\Delta \Rightarrow$

$$
\begin{aligned}
& \Delta=\{(x(x) \mid x \in X\{\in X \times X \text { is closed. }
\end{aligned}
$$

(b) i) $k=\{1 / n \mid n \in \mathbb{N}\{$
$y=R_{k} \backslash K \quad p: X \rightarrow y$ quotient map.
y is T_{1} but not Hausdorff.
ii) Product of quotient maps meed not be a quotient map.
$p \times p: \mathbb{R}_{k} \times \mathbb{R}_{k} \rightarrow Y \times Y$ is NOT a quotient map.
open sets ie \mathbb{R}_{k} topology are unions of $(a, b) \cup(a, b) \backslash K$.
$[0] \neq[k]$ in y
But \exists no open sets ie Y of [O] and [K] which old not intersect. NOT Hausdorff.

Any point ie i I other than $[0],[k]$ is $[y], y \in \mathbb{R}$. [y] [z]
consider

$$
\hat{y}-\epsilon^{y} \vec{y}_{y+\epsilon}
$$

y is T_{1}.

