(Problem Bearion 2

() ACX i) À is the largest open set contained in A. het J B s.t. B C A and Å C B. JxeB st x&A. · Bio open => JU=x ort UCBCA = $\gamma \in$ A . ⇒ Ă = UU A S U i) A is the smallest closed set that contains A. B is another closed set s.J. Duppose ACB. => BCA => A°CB° B'is open and : ACB => B'CAC Uping the defn of closene, i.e. if x e Ā => every open set containing & must intersect A nontrivially.

2 R

$$T_1 = \text{Stendard top.}$$

 $T_2 = R_e$
 $T_3 = R_u$ $T_4 = \text{cofinite topology.}$

demma hat Bond B' be based for topologies

$$T$$
 and T' respectively on X. Shew
 $TFAE.$
) T' is finer than $T.$
a) F re X and F B e B at xe B, 3
a basis element $B' \in B'$ at $x \in B' \subset B$.
 $T_1 \qquad T_2$
 $R, ntd \qquad F(a, b) | b > a §$
Duppose $x \in R$ and $(a, b) \ni X$
 $x \in [X_1b] \in B_2$ and $[X_1b] \subset (a_1b)$
 \Rightarrow from the lemma $T_1 \subset T_2$.
Con we say that $T_1 \supset T_2$?
 $bd x \in R \Rightarrow [X, b] = x$ and belongs to
 bg . elements in Both are (a_1b) .
 \Rightarrow from the lemma above
 $T_2 \supset T_1$
 $g \supset T_1$

(3) B= { (a, b) | a, b = Q } (a) generates the standard to pology on 12. x elR and (c,d) = x : 10 is dense sur R 4 E>0 3 9 E Q 0+ 1x-91 < E. $\exists \mathfrak{G}_1, \mathfrak{G}_2 \in \mathfrak{W} \quad s \not t \quad s \in (\mathfrak{G}_1, \mathfrak{G}_2)$ (g, g2) c (c, d) ono B = Bstand. -0 R has a countable basis. =D $C = \{ [a,b] | a,b \in \mathbb{C} \}$ (b).

Consider the sequence

$$x_{\omega}^{n} = \left\{ \left(\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \dots \right) \mid n \in \mathbb{N} \right\}$$

with \mathbb{R}^{ω} in \mathbb{R}^{ω}
 $(0, 0, 0, 0, 0, \dots)$
Consider the nod
 $(-1, 1) \times (-\frac{1}{2}, \frac{1}{2}) \times (-\frac{1}{3}, \frac{1}{3}) \times (-\frac{1}{4}, \frac{1}{4})$
 $x \dots (-\frac{1}{2}, \frac{1}{4}) \times (-\frac{1}{2}, \frac{1}{2}) \times (-\frac{1}{3}, \frac{1}{3}) \times (-\frac{1}{4}, \frac{1}{4})$
is a nod of $(0, 0, \dots, 0, \dots)$ in $\mathbb{R}^{\omega} = \sqrt{2}$
box topology. and $(x_{\omega}^{n}) \longrightarrow (0, 0, \dots, 0, \dots)$
 $4(b)$ -similar approach as $4(a)$.
5(a) Box topology is fined than product.
(b) f: \mathbb{R}_{cof} . Risted is continuous
 $a = b$ f is constant.
Suppose f is NOTT constant and $f(x) \neq f(x)$

for some
$$x \neq y$$
.
Rotal is Hausdogg $\Rightarrow \exists U_x \Rightarrow f(x) \text{ and } U_y \Rightarrow f(y)$
 $e R u/ U_x \cap U_y = \varphi$.
Open
 $f is continuous = p \neq f^{-1}(U_x) \text{ is open in Rcof}$
 $\varphi \neq f^{-1}(U_y) \text{ is open in Rcof}.$

$$f^{-1}(U_{x}) \cap f^{-1}(U_{y}) \neq \Phi$$

$$A, B \quad \text{Spen Rag.} \Rightarrow A \cap B \neq \Phi.$$

$$a \quad \text{contradiction as } f^{-1}(U_{x} \cap U_{y}) = \Phi$$

$$\Rightarrow \quad f_{ii} \quad \text{constant.}$$

5(b) {Xa} E TIX can also be whiten as f: I -> TIXa. whiten as f: I -> TIXa. <u>domme</u> A for e X^I converges in the box hopology to fe X^I &=> I finite Jubset Jopology to fe X^I &=> I finite Jubset

