Pset 1 :-
() NOt every metric space comes from a norm.
ex discrete metric space is NOT a mormed space.
Normed space
$$\alpha \in \mathbb{R}$$
, $x \in X$
 $\int ||\alpha x|| = |\alpha| ||x||$
can never be bounded.
But there are bounded metric spaces, e.g.,
a discrete metric space.
(2) every subset is open in $(X, discrete metric)$.
 $\frac{2}{3 \times 2}$ is open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ is open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ is open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ is open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ is open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ is open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ is open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ is open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ is open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ is open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ open in $X = 0$ any cubset is union
 $\frac{2}{3 \times 2}$ open of a discrete metric space is closed.
Cuber ond closed. The connected need.

any
$$x_n \rightarrow x$$
 is eventually constant.
 $e-8 \text{ old}^n \qquad B_{Y_n}(x)$
 $[x] open and it contains $x \Rightarrow if x_n \rightarrow x \Rightarrow a \exists no$
 $a \neq y n \ge no$, $x_n \in \{x \} \Rightarrow x_n = x \notin n \ge no$
 $= b (x_n)$ is eventually constant.
(a) $f: (x,d) \rightarrow y$ must be continuous.
(b) $f: (x,d) \rightarrow y = f = (u) \text{ is a subset } q$
 $y \Rightarrow \text{ open set } U \in y \Rightarrow f = (u) \text{ is a subset } q$
 $(x \Rightarrow a) \text{ open set } (x, a) = b (x, d) \text{ is continuous}$
(b) $f: (R^n, d_E) \rightarrow (x, d) \text{ is continuous}$
 $f = (x + x) = (x, d_E) \rightarrow (x, d) \text{ is continuous}$
 $f = (x) \in x \qquad x = \{x + x) \neq 0 \} y + \{x\} \neq f(x) \}$
 $f(x) \in X \qquad x = \{x + x) \neq 0 \} y + \{x\} \neq f(x) \}$
 $R^n = f^{-1}(u) \cup f^{-1}(v) \qquad \text{open in } x \qquad \text{open in } x$
 $R^n = f^{-1}(u) \cap f^{-1}(v) = \phi \qquad \text{cannot happen } b/c$
 $non-empty$.
(a) any coubset of X is both open and closed
 $\Rightarrow if f = x \qquad x = x$$

f⁻¹(A) is Open in Rⁿ and f⁻¹(A) closed in Rⁿ.
The only monempty open and closed investo are Rⁿ
is Rⁿ itself.
$$\Rightarrow$$
 f⁻¹(A) = Rⁿ
 \Rightarrow f⁻¹(3xi) = Rⁿ \Rightarrow f(Rⁿ) = (xi)
 \Rightarrow f is a constant function.
g: R \rightarrow (xid) g is continuous suppose g⁻¹(A)=B
B is again both open and closed, monempty.
B is again both open and closed, monempty.
B is again both open and closed, monempty.
B is again both open and closed and g \neq B.
Buppose R \neq R \Rightarrow g \Rightarrow bo.
Z = $\{x \in R \mid x > b_0, x \neq B\}$
is bounded below by be, nonempty as $g \in Z$
is bounded below by be, nonempty as $g \in Z$.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D by lub property \exists inf Z = E.
D for a pen interval (Z = e, z + e) \subset R = R | B.
 $z = f(z = e, z + e) \subset$ is a one open interval (Z = e, z + e) \subset R = R | B.
 $z = f(z = e, z + e) \bigcirc$ interval (z = e, z + e) \subset R = R | B.
 $z = f(z = e, z + e) \bigcirc$ interval (z = e, z + e) \subset must be constant.

more opensets means fewer convergent sequences or fewer continuous functions.

(3) Draw
$$B_{1}(0)$$
 in $(R^{2}, d_{1}, d_{2}, d_{0})$.
 $B_{1}(0)$ in $d_{2} = \{(x, y) \in R^{2} | 0|_{2}((x, y), (0, n)) = \{(x, y) \in R^{2} | \sqrt{x^{2}+y^{2}} < 1\}$
 $= \{(x, y) \in R^{2} | \sqrt{x^{2}+y^{2}} < 1\}$
 $= \{(x, y) \in R^{2} | \sqrt{x^{2}+y^{2}} < 1\}$
 $B_{1}(0)$.
 $B_{1}(0)$.
 $B_{1}(0)$.
 $(0, 1)$
 $(0, 1)$
 $(0, 1)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$
 $(1, 0)$

$$B_{1}(b) in d_{0} = \{(x,y) \in \mathbb{R}^{2} \mid \max \{(x,y,y)\} \in \mathbb{R}^{2} \}$$

$$d_{1}, d_{2} \text{ and } d_{0} \text{ one equivalent instrice on } \mathbb{R}^{2}$$

$$d_{1}, d_{2} \text{ and } d_{0} \text{ one equivalent instrice on } \mathbb{R}^{2}$$

$$(4) \qquad (x, y) \in \mathbb{X}, dix = b \quad \{x \in \mathbb{N}, \mathbb{N}\} \text{ are open sets}$$

$$(5) \qquad d'(x,y) = \min \{1, d(x,y)\} \text{ is a metric on } \mathbb{X}$$

$$det \quad x,y,z \in \mathbb{X}, dix = \sum \{x, \{1, d(x,y)\}\} \text{ is a metric on } \mathbb{X}$$

$$det \quad x,y,z \in \mathbb{X}, dix = b \quad \{x \in \mathbb{N}, \mathbb{N}\} \text{ are open sets}$$

$$(6) \qquad d'(x,y) = \min \{1, d(x,y)\} \text{ is a metric on } \mathbb{X}$$

$$det \quad x,y,z \in \mathbb{X}, d(x,z) + d(y,z) \text{ are } (x,y,z) \text{ are } (x,y,z)$$

$$d'(x_iy) = \frac{d(x_iy)}{1 + d(x_iy)} < 1, et is also a$$

$$o - \infty - \infty - \infty$$

$$\int ([a_1b]) = \frac{2 \times 1, \dots, \times n}{2 \times 2}$$