Topology I Shubham Dwivedi

Problem Set 3 Due date: 011.05.2021

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English (preferable) and should be handed in before the Problem sessions on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Tuesday lecture.

Problems

- (1) What are all compact and sequentially compact subsets of \mathbb{R} with cofinite topology?
- (2) (*) Prove that every compact subspace of a Hausdorff space is closed. Can it happen that a space is non-Hausdorff but a subspace of it is Hausdorff?
- (3) For $A \subset X$, a **retraction** of X onto A is a continuous map $r : X \to A$ such that r(a) = a, $\forall a \in A$. Show that a retraction is a quotient map.
- (4) (*) Give an example of a space with non-trivial topology which is T_1 but not T_2 . (If you are giving Prob. 6 (b) (i) as an example then prove it.)
- (5) The quotient of a space X by a subset $A \subset X$ is defined as $X/A := X/\sim$ with the quotient topology, where the equivalence relation is defined such that $x \sim y$ for every $x, y \in A$ and otherwise $x \sim x$ for all $x \in X$. In other words, X/A is the result of modifying X by "collapsing A to a point".

Show that for every $n \in \mathbb{N}$, S^n is homeomorphic to D^n/S^{n-1} , where $D^n = \{x \in \mathbb{R}^n \mid |x| \leq 1\}$.

- (6) (a) Prove that X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) \mid x \in X\}$ is a closed subset of $X \times X$.
 - (b) Recall the space \mathbb{R}_K with the K-topology from Problem set 2. Let $Y = \mathbb{R}_K/K$ and let $p: X \to Y$ be the quotient map. Prove that (i) Y is T_1 but not Hausdorff.

 $(ii)(*) \ p \times p : \mathbb{R}_K \times \mathbb{R}_K \to Y \times Y$ is not a quotient map. (*Hint: Use part (a) to prove that* Δ *is not closed in* $Y \times Y$ *but its inverse image is closed in* $\mathbb{R}_K \times \mathbb{R}_K$.)