Topology I Shubham Dwivedi

Problem Set 2 Due date: 04.05.2021

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English (preferable) and should be handed in before the Problem sessions on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Tuesday lecture.

Problems

- (1) Let X be a topological space and $A \subset X$. Prove the assertions made in the lecture that (a) The interior of A, \mathring{A} is the largest open subset of X that is contained in A.
 - (b) The closure of A, \overline{A} is the smallest closed set of X that contains A.
- (2) Consider \mathbb{R} . We define two new topologies on \mathbb{R} by describing the basis as follows.

Consider the collection \mathcal{B} of intervals of the form [a, b), a < b. The topology generated by \mathcal{B} is called the **lower limit topology** on \mathbb{R} and we denote the resulting topological space as \mathbb{R}_l .

Let $K = \{\frac{1}{n} \mid n \in \mathbb{N}\}$ and consider \mathcal{B}' to be the collection of intervals of the form (a, b) along with all sets of the form (a, b) - K. The topology generated by \mathcal{B}' is called the K-topology on \mathbb{R} and the resulting topological space is denoted as \mathbb{R}_K .

Compare the following topologies on \mathbb{R} , i.e., check which topology is weaker, stronger or incomparable :

- (a) \mathcal{T}_1 = standard topology.
- (b) $\mathcal{T}_2 = \text{lower limit topology.}$
- (c) \mathcal{T}_3 = upper limit topology with basis consisting of intervals of the form (a, b], a < b.
- (d) \mathcal{T}_4 = finite complement topology.
- (3) (a) Show that the countable collection

$$\mathcal{B} = \{(a, b) \mid a, \ b \in \mathbb{Q}\}$$

generates the standard topology on \mathbb{R} .

(b) (*) Show that the collection

$$\mathcal{C} = \{ [a, b) \mid a, \ b \in \mathbb{Q} \}$$

as a basis generates a different topology than the lower limit topology on \mathbb{R} .

(4) Suppose $\{(X_a, \mathcal{T}_a)\}_{a \in I}$ is a (possibly infinite) collection of topological spaces and let $(X, \mathcal{T}) = \prod_{a \in I} X_a$ with the product topology. Consider the subbase $\mathcal{B} \subset \mathcal{T}$ to consist of all sets of the form

$$U_b \times \Pi_{a \neq b} X_a \subset \Pi_a X_a$$

for arbitrary $b \in I$ and $U_b \in \mathcal{T}_{|}$. Prove:

- (a) (*) A sequence $\{x_a^n\}_{a \in I}$ converges to $\{x_a\}_{a \in I}$ if and only if $x_a^n \to x_a$ for all $a \in I$.
- (b) For any other topological space $Y, f: Y \to X$ is continuous if and only if $\pi_a \circ f: Y \to X_a$ is continuous for every $a \in I$, where $\pi_a: X \to X_a$ denotes the projection $\{x_a\}_{a \in I} \mapsto x_a$.
- (5) Assume I is an infinite set and $\{(X_a, \mathcal{T}_a)\}_{a \in I}$ is a collection of topological spaces. Consider the collection

 $\mathcal{B} = \{ \Pi_{a \in I} U_a \mid U_a \in \mathcal{T}_a \text{ for all } a \in I \}.$

- the topology generated by \mathcal{B} on $\prod_{a \in I} X_a$ is called the **box topology**.
- (a) Compare the box topology and the product topology.

- (b) What does it mean for a sequence in $\prod_{a \in I} X_a$ to converge in the box topology?
- (6) (*) Show that a map $f : \mathbb{R}_{cof} \to \mathbb{R}_{std}$ is continuous if and only if f is a constant function. Here \mathbb{R}_{cof} denotes \mathbb{R} with the cofinite topology and \mathbb{R}_{std} with the standard topology.