Shubham Dwivedi

Summer Semester 2021

Problem Set 1

Due date: 27.04.2021

Instructions

Problems marked with $(*)$ will be graded. Solutions may be written up in German or English (preferable) and should be handed in before the Problem sessions on the due date. For problems without $(*)$, you do not need to write up your solutions, but it is highly recommended that you think through them before the next Tuesday lecture.

Problems

(1) $(*)$ Prove that not every metric space comes from a norm, i.e., there are metric spaces whose metric are not induced by a norm.
Hint: Recall the properties of the norm and see if the metric from a norm could be bounded or unbounded?
(2) Show that on any set X with the discrete metric d, every subset is open.

Conclude that a sequence x_{n} converges to x if and only if $x_{n}=x$ for all n sufficiently large, i.e. the sequence is "eventually constant".

Then use this to prove the following statements:
(a) All maps from (X, d) to any other metric space are continuous.
(b) All continuous maps from $\left(\mathbb{R}^{n}, d_{E}\right)$ to (X, d) are constant. Here d_{E} is the Euclidean metric of \mathbb{R}^{n} which we also denoted by d_{2}.
(3) (*) Draw figures of the open unit ball $B_{1}(0)$ in the following spaces.
(a) $\left(\mathbb{R}^{2}, d_{2}\right)$
(b) $\left(\mathbb{R}^{2}, d_{1}\right)$
(c) $\left(\mathbb{R}^{2}, d_{\infty}\right)$.
(4) Definition. A topological space is called a Hausdorff space or is said to satisfy the Hausdorff property if for any two distinct points, there exist neighbourhoods of each which are disjoint from each other.
Prove that any metric space is a Hausdorff space. Give explicit disjoint open sets which you can use to separate points in a metric space with discrete metric.
(5) Show that for any metric space (X, d),

$$
d^{\prime}(x, y)=\min \{1, d(x, y)\}
$$

also defines a metric on X. Show that d and d^{\prime} are equivalent. Conclude that every metric is equivalent to one that is bounded.
(6) Suppose $\left(X, d_{X}\right)$ is a metric space and \sim is an equivalence relation on X, with the resulting set of equivalence classes denoted by X / \sim. For equivalence classes $[x],[y] \in X / \sim$, define

$$
\begin{equation*}
d([x],[y]):=\inf d_{X}(x, y), x \in[x], y \in[y] \tag{0.1}
\end{equation*}
$$

(a) (*) Show that d is a metric on X / \sim if the following assumption is added: for every triple $[x],[y],[z] \in X / \sim$, there exist representatives $x \in[x], y \in[y]$ and $z \in[z]$ such that $d_{X}(x, y)=d([x],[y])$ and $d_{X}(y, z)=d([y],[z])$.
Comment: The hard part is proving the triangle inequality.
(b) Consider the real projective plane $\mathbb{R P}^{2}=S^{2} / \sim$, where $S^{2}:=\left\{x \in \mathbb{R}^{3}| | x \mid=1\right\}$ and the equivalence relation identifies antipodal points, i.e. $x \sim-x$. If d_{X} is the metric on S^{2} induced by the standard Euclidean metric on \mathbb{R}^{3}, show that the extra assumption in part (a) is satisfied, so that (0.1) defines a metric on $\mathbb{R P}^{2}$.

