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Local representation of metrics

Einstein Summation Convention

V inner product space

we'll use subscripts forvectors in V a basis of
v is denoted by
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Similarly e will denote the dual basisof
V Hom V R w ei ej Sj t.is

O Othera

If L V V is a linear map then its matrix

representation is
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On manifolds coordinate v f have subscripts
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coordinate v f

dual covectorfield I form doe and drip Sj

we can multiply 1 forms O 02 toget bilinear
forms
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in local coordinates we get the bilinear forms
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Riemannian metric
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expression of the metric1g Gj in local coordinates using

gig are the function the Einstein Summation
convention

which give a representationof g as a positivedefinite symmetric matrix
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prove that the Euclidean metric on IR half.im

in polar coordinates is
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Tensors
Tm T M

Def An sat tensor T is a section of the
tensor bundle
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In local coordinates

Selecta frame E En and construct the

co frame T on
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we'll simply write
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T Til is
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Stt is called the rank of the tensor

a vector Ei us
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the vector E can be converted to a corrector

o using
the Riemannian metric

Ei to Gijs
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to vectorvector

g
is denotes the ij th entry of the

inverse matrix
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Remarks when we use the coordinate v f
as our frame then we need to invert Jj

However if we use an orthonormalframe then

g is Gig Identity matrix we can just
move the indices up

and down w o any
bother

Examples

Ricci tensor of g It's a 1,1 tensor

Ric Ei Ri Ej
80 Ric Rj E 55

L 1 tensor can be changed to a 0,2 tensor

Ric Rj 0 2 Gj R Otar's
was

also see this as a 210 tensor
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The curvature tensor g
2,3 tensor R X Y Z

R Rijk Ee tix rj ok

can be converted into a 014 tensor
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Remand Our convention is that

Rijigs Rijke

There are some other conventions where the

superscript comes to the 1st or 3rdplace
i e Rijigs Reijk
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Contractions Taking Trace of a tensor

T Tj Ei 05 then the trace of T
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T

For a Co 2 tensor T the trace of T is
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Trace of the Ricci curvature is called the

scalar curvature
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Inner productof tensors
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pointwise inner product Tand S are 1012 tenso
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Einnerproduct
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M to volume form

CovariantDerivatives

Lie derivative
1storder 2ndorderdifferential operators on Mg


