Lecture 2
\rightarrow Riemannion manifold
\rightarrow Hops fibratione
\rightarrow volume form
Local representation of metrics
Einstein Summation Convention
V^{n}-inner product space
well use subscripts for vectors in V : a basis of V is denoted by e_{1}, \ldots, e_{n}
Let $v \in V$

$$
\begin{aligned}
& A^{j} e_{j}=A^{\prime} e_{1}+A^{2} e_{2}+\cdots+A^{n} e_{n} \text {. }
\end{aligned}
$$

Similarly, $\left\{e^{i}\{\right.$ will denote the dual basis of $V^{*}=\operatorname{Hom}(V, \mathbb{R}) \quad w / \quad e^{i}\left(e_{j}\right)=\delta_{j}^{i}=\left\{\begin{array}{l}1, i=j \\ 0, \text { oftemenin }\end{array}\right.$

If $L: V \rightarrow V$ is a linear map then ifs matrix representation $\left[\begin{array}{l}j \\ i\end{array}\right]$

$$
L\left(e_{\underline{i}}\right)=L_{1}^{j} e_{j}
$$

On manifolds, coordinate v.f. have subscripts

$$
\begin{align*}
& \partial_{i}=\frac{\partial}{\partial x^{i}} \tag{i}\\
& \underset{\text { coovelinate v.f. }}{\downarrow}
\end{align*}
$$

dual covectorfield / 1-form $d x^{i}$ and $d x^{i}(\partial j)=\delta_{j}^{i}$
we con multiply 1 -forms θ_{1}, θ_{2} to get bilinear forms

$$
\theta_{1} \cdot \theta_{2}(u, v)=\theta_{1}(u) \cdot \theta_{2}(v) \neq \theta_{2} \cdot \theta_{1}
$$

\downarrow tensor product of θ_{1} and $\theta_{2}, \theta_{1} \cdot \theta_{2}=\theta_{1} \circledast \theta_{2}$.
\therefore in local coordinates we get the bilinear forms

$$
d x^{i} d x^{j}=d x^{i} \otimes d x^{j}
$$

g - Rumanian metric

$$
g=g\left(\partial_{i}, \partial_{j}\right) d x^{i} d x^{j}
$$

as $\quad g(\underline{u}, \underline{v})=g\left(\underline{d x^{i}(u)} \partial_{i}, d x^{j}(v) \partial_{j}\right)$

$$
\begin{aligned}
& =g\left(\partial_{i}, \partial_{j}\right) d x^{i}(u) \cdot d x^{j}(v) \\
& =g\left(\partial_{i}, \partial_{j}\right) d x^{i} d x^{j}
\end{aligned}
$$

$$
g=g_{i j} d x^{i} d x^{j}
$$

$g_{i j}$ are the function

- expression of the metric wi local coordinates using the Einstein Summation convention. which give a representation of g as a positive definite symmetric matrix.
$p \in M, g_{p}$ i.p. on $T_{p} M, \quad\left\{\partial_{i} \xi\right.$

$$
g\left(\partial_{i}, \partial_{j}\right)=g\left(\partial_{j}, \partial_{i}\right)
$$

0.g. $\mathbb{R}^{n}, g_{\text {quail. }} \quad g_{i j}=\delta_{i j}$

ㅇ, $\quad g_{\text {Encl. }}=\delta_{i j} d x^{i} d x^{j}=(d x)^{2}+\left(d x^{2}\right)^{2}+\cdots+(d x)^{2}$

$$
=\sum_{i=1}^{n}\left(d x^{i}\right)^{2} .
$$

Ene: $\mathbb{R}^{2} \backslash$ \{half line) (γ, θ) polar coordinates. prove that the Euclidean metric on $\mathbb{R}^{2} \backslash\left\{\begin{array}{l}\text { affinime }\end{array}\right\}$ in polar coordinates is

$$
g=d r^{2}+r^{2} d \theta^{2}
$$

Tensors
$T M, T^{*} M$

Def n:- $A_{n}(s, t)$-tensor T is a section of the tensor bundle

In local coorelinates,
Select a frame E_{1}, \ldots, E_{n} and construct the co-trame $\quad \sigma^{\prime}, \ldots, \sigma^{n}$

$$
\begin{aligned}
& V=v^{i} E_{i}=\sigma^{i}(r) E_{i} \text {-vectors } \\
& \omega=\omega_{j} \sigma_{-}^{j}=\omega\left(E_{j}\right) e^{j} \\
& T=T_{j_{1} \ldots j_{t}}^{i_{1} \ldots i_{s}} E_{i_{1}} \otimes \cdots \otimes E_{i_{s}} \otimes \sigma^{j_{1} \otimes \sigma^{j} \otimes \ldots \otimes \sigma_{t}}
\end{aligned}
$$

well simply write T in local coordinates as

$$
T=T_{j_{1} \cdots, j_{t}}^{i_{1} \ldots i_{s}}
$$

$s+t$ is called the rook of the tensor.
a vector $E_{i} \leadsto$

$$
\begin{aligned}
& w \longmapsto g\left(E_{i}, w\right) \\
& g\left(E_{i}, w\right)=g\left(E_{i}, E_{j}\right) \sigma^{j}(w)=g_{i j} \sigma^{j}(w)
\end{aligned}
$$

\therefore the vector E_{i} can be converted to a corrector σ^{j} using the Riemanowan metric.

$$
\underset{\text { rector }}{E_{i}} \underset{\text { wovector }}{\mathrm{g}_{i j} \sigma^{j}}
$$

$g^{i j}$ denotes the ij-th entry of the inverse matrix.

$$
\sigma^{j} \longrightarrow g^{i j} E_{i}
$$

Remark:- when we use the coorelinate v.f. as our frame then we need to invert $g_{i j}$.

However, if we use an orthonormal frame then $g^{i j}=g_{i j}=$ Identity matrix \Rightarrow we can just move the indices up and down w/o ane bother.

Examples:-
(1) Riccitensor of $g:$ Rt's a $(1,1)$-tensor

$$
\begin{aligned}
\operatorname{Ric}\left(E_{i}\right) & =R_{i}^{j} E_{j} \\
\therefore \quad \operatorname{Ric} & =R_{j}^{i} \cdot E_{i} \otimes \sigma^{j}
\end{aligned}
$$

$(1,1)$-tensor can be changed to a $(0,2)$-tensor

$$
R_{i c}=R_{j k} \cdot \sigma^{j} \otimes \sigma^{k}=g_{\underline{j i}} R_{k}^{i} \cdot \sigma^{j} \otimes \gamma^{k}
$$

also see this as a $(2,0)$-tensor

$$
R_{i c}=R^{i k} E_{i} \otimes E_{k}=g^{i j} R_{j} k \cdot E_{i} \otimes E_{k} .
$$

(2) The curvature tensor g

$$
\begin{array}{ll}
(1,3) \text {-tensor } & R(x, y) z \\
R=R_{i j k}^{l} & E_{l} \otimes \sigma^{i} \otimes \sigma^{j} \otimes \sigma^{k}
\end{array}
$$

can be converted into a $(0,4)$-tensor

$$
\begin{aligned}
R & =R_{i j k l} \sigma^{i} \otimes \sigma^{j} \otimes \sigma^{k} \otimes \sigma^{l} \\
& =R_{i j k}^{s} g_{s l} \cdot \sigma^{i} \otimes \sigma^{j} \otimes \sigma^{k} \otimes \sigma^{l}
\end{aligned}
$$

Remark:- Our convention is that

$$
R_{i j k}^{s} g_{s l}=R_{i j k l}
$$

There are some other conventions where the superscript comes to the $1^{\text {st }}$ or $3^{\text {roll }}$ place. i.e. $\quad R_{i j k}^{\Delta} g_{s l}=R_{\text {lijk }}$

$$
R_{i j k}^{s} g_{s l}=R_{i j l k}
$$

Contractions / Taking Trace of a tensor
$T=T_{j}^{i} \cdot E_{i} \otimes \sigma^{j}$ then the trace of T

$$
\operatorname{Tr} T=C(T)=T_{i}{ }^{i}
$$

For a $(0,2)$-tensor T, the trace of T is

$$
C(T)=T_{i k} g^{i k}
$$

Trace of the Riccio curvature is called the scalar curvature

$$
\begin{aligned}
R=\operatorname{rr}\left(R_{i c}\right) & =g^{i j} R_{i j} \\
& =R_{i j k i} g^{i l} g^{j k} .
\end{aligned}
$$

Inner product of tensors

$$
|T|^{2}=T_{j}^{i} T_{!}^{k} g^{l j} g_{i k}
$$

Pointwise inner product, Tand S are (O, R) tensors

$$
\langle T, S\rangle=T_{i j \underline{j}} S_{k l} g^{i k} g^{i l}
$$

for $S=T$
$\langle T, T\rangle=|T|^{2}=T_{i j} T_{k l} g^{i k g j l}$
L^{2} - inner product

$$
(T, S)
$$

$$
\begin{aligned}
& \int_{M}\langle T, S\rangle \text { vol. } \\
& \text { lo volume form. }
\end{aligned}
$$

\rightarrow Covariant Derivatuies
\rightarrow Lie derivattie
$\rightarrow 1^{\text {st }}$ order/2nd order olifferential operators au (Mig,

