Problem Set 1 Due date: 11.12.2023

Problems

- (1) Find the expression of the (1,3) Riemann curvature tensor in coordinates in terms of the Christoffel symbols. (**Hint:** Proceed in the same as we obtained a formula for the Christoffel symbols in terms of the derivatives of the components of the metric.)
- (2) Prove the following
 - (a) Ric is a symmetric (0, 2)-tensor.
 - (b) $\nabla_i R^i_{jmk} = \nabla_k R_{jm} \nabla_m R_{jk}.$
 - (c) $\nabla_i R_j^i = \frac{1}{2} \nabla_j R$ which in invariant form reads as div Ric $= \frac{1}{2} dR$ where div is the divergence of a tensor.
- (3) Let g be a Riemannian metric on a manifold M. Let c > 0 be a constant. Then cg is again a Riemannian metric on M as is said to be a rescaled metric. Show that as a (1,3)-tensor $R_{(1,3)}(cg) = R_{(1,3)}(g)$. Find the scalings of the (0,4)-Riemann curvature tensor, the Ricci curvature and the Scalar curvature. (**Hint:** What can you say about the Levi-Civita connection ∇^{cg} in terms of ∇^{g} ?)
- (4) Prove the **Bochner formula** for $|\nabla f|^2$, i.e., for $f \in C^{\infty}(M)$, prove that

$$\Delta |\nabla f|^2 = 2|\nabla \nabla f|^2 + 2R_{ij}\nabla^i f \nabla^j f + 2\nabla_i f \nabla^i (\Delta f).$$
(0.1)

Conclude from this that if $\operatorname{Ric} \geq 0$, $\Delta f = 0$ and $|\nabla f| = \operatorname{constant}$ then ∇f is parallel.

(5) Prove the following integral equality:

$$\int_{M} |\nabla \nabla f|^2 \operatorname{vol} + \int_{M} \operatorname{Ric}(\nabla f, \nabla f) \operatorname{vol} = \int_{M} (\Delta f)^2 \operatorname{vol}$$
(0.2)

and using the fact that¹, $|\nabla \nabla f|^2 \geq \frac{1}{n} (\Delta f)^2$, show that

$$\int_{M} \operatorname{Ric}(\nabla f, \nabla f) \operatorname{vol} \le \frac{n-1}{n} \int_{M} (\Delta f)^{2} \operatorname{vol}.$$
(0.4)

(Hint: Integration by parts!)

- (6) Use the above to prove the following theorem due to **Lichnerowicz.** Suppose f is an eigenfunction of Δ with eigenvalue $\lambda > 0$, i.e., $\Delta f + \lambda f = 0$. If $\text{Ric} \ge (n-1)K$ for some constant K > 0 then $\lambda \ge nK$.
- (7) The purpose of this problem is to show that in dimension 3, the Ricci curvature determines the Riemann curvature tensor.
 - (a) Let (M^3, g) be a 3-dimensional Riemannian manifold and let us diagonalize the curvature operator (as a self-adjoint operator on 2-forms) Rm with respect to a basis $\{e_2 \land e_3, e_3 \land e_1, e_1 \land e_2\}$ of $\Lambda^2 T^*M$, where $\{e_1, e_2, e_3\}$ is an orthonormal basis of TM^3 (this is possible because Rm is self-adjoint). Suppose that, with respect to this basis, Rm is a diagonal matrix with entries $\lambda_1, \lambda_2, \lambda_3$ down the diagonal. Then with respect to the basis $\{e_1, e_2, e_3\}$, prove that the Ricci tensor takes the form

$$\operatorname{Ric} = \frac{1}{2} \begin{bmatrix} \lambda_2 + \lambda_3 & 0 & 0 \\ 0 & \lambda_3 + \lambda_1 & 0 \\ 0 & 0 & \lambda_1 + \lambda_2 \end{bmatrix}$$
(0.5)

$$|S_{ij}|_g^2 \ge \frac{1}{n} (g^{ij} S_{ij})^2 \tag{0.3}$$

¹This is the usual Cauchy-Schwarz inequality. More generally, if S is any (2,0)-tensor then

and the scalar curvature $R = \lambda_1 + \lambda_2 + \lambda_3$. (Hint: Use the geometric interpretation of the Ricci and scalar curvatures.)

(b) Prove that an Einstein metric on a manifold of dimension $n \ge 3$ has constant scalar curvature. If n = 3, the metric has constant sectional curvature.