Problem Set 1

Due date: 11.12.2023

Problems

(1) Find the expression of the $(1,3)$ Riemann curvature tensor in coordinates in terms of the Christoffel symbols. (Hint: Proceed in the same as we obtained a formula for the Christoffel symbols in terms of the derivatives of the components of the metric.)
(2) Prove the following
(a) Ric is a symmetric $(0,2)$-tensor.
(b) $\nabla_{i} R_{j m k}^{i}=\nabla_{k} R_{j m}-\nabla_{m} R_{j k}$.
(c) $\nabla_{i} R_{j}^{i}=\frac{1}{2} \nabla_{j} \mathrm{R}$ which in invariant form reads as div Ric $=\frac{1}{2} d \mathrm{R}$ where div is the divergence of a tensor.
(3) Let g be a Riemannian metric on a manifold M. Let $c>0$ be a constant. Then $c g$ is again a Riemannian metric on M as is said to be a rescaled metric. Show that as a $(1,3)$ tensor $R_{(1,3)}(c g)=R_{(1,3)}(g)$. Find the scalings of the $(0,4)$-Riemann curvature tensor, the Ricci curvature and the Scalar curvature. (Hint: What can you say about the Levi-Civita connection $\nabla^{c g}$ in terms of ∇^{g} ?)
(4) Prove the Bochner formula for $|\nabla f|^{2}$, i.e., for $f \in C^{\infty}(M)$, prove that

$$
\begin{equation*}
\Delta|\nabla f|^{2}=2|\nabla \nabla f|^{2}+2 R_{i j} \nabla^{i} f \nabla^{j} f+2 \nabla_{i} f \nabla^{i}(\Delta f) \tag{0.1}
\end{equation*}
$$

Conclude from this that if Ric $\geq 0, \Delta f=0$ and $|\nabla f|=$ constant then ∇f is parallel.
(5) Prove the following integral equality:

$$
\begin{equation*}
\int_{M}|\nabla \nabla f|^{2} \mathrm{vol}+\int_{M} \operatorname{Ric}(\nabla f, \nabla f) \mathrm{vol}=\int_{M}(\Delta f)^{2} \mathrm{vol} \tag{0.2}
\end{equation*}
$$

and using the fact that ${ }^{1},|\nabla \nabla f|^{2} \geq \frac{1}{n}(\Delta f)^{2}$, show that

$$
\begin{equation*}
\int_{M} \operatorname{Ric}(\nabla f, \nabla f) \operatorname{vol} \leq \frac{n-1}{n} \int_{M}(\Delta f)^{2} \operatorname{vol} . \tag{0.4}
\end{equation*}
$$

(Hint: Integration by parts!)
(6) Use the above to prove the following theorem due to Lichnerowicz. Suppose f is an eigenfunction of Δ with eigenvalue $\lambda>0$, i.e., $\Delta f+\lambda f=0$. If Ric $\geq(n-1) K$ for some constant $K>0$ then $\lambda \geq n K$.
(7) The purpose of this problem is to show that in dimension 3, the Ricci curvature determines the Riemann curvature tensor.
(a) Let $\left(M^{3}, g\right)$ be a 3 -dimensional Riemannian manifold and let us diagonalize the curvature operator (as a self-adjoint operator on 2 -forms) $R m$ with respect to a basis $\left\{e_{2} \wedge e_{3}, e_{3} \wedge\right.$ $\left.e_{1}, e_{1} \wedge e_{2}\right\}$ of $\Lambda^{2} T^{*} M$, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is an orthonormal basis of $T M^{3}$ (this is possible because $R m$ is self-adjoint). Suppose that, with respect to this basis, $R m$ is a diagonal matrix with entries $\lambda_{1}, \lambda_{2}, \lambda_{3}$ down the diagonal. Then with respect to the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, prove that the Ricci tensor takes the form

$$
\operatorname{Ric}=\frac{1}{2}\left[\begin{array}{ccc}
\lambda_{2}+\lambda_{3} & 0 & 0 \tag{0.5}\\
0 & \lambda_{3}+\lambda_{1} & 0 \\
0 & 0 & \lambda_{1}+\lambda_{2}
\end{array}\right]
$$

[^0]and the scalar curvature $R=\lambda_{1}+\lambda_{2}+\lambda_{3}$. (Hint: Use the geometric interpretation of the Ricci and scalar curvatures.)
(b) Prove that an Einstein metric on a manifold of dimension $n \geq 3$ has constant scalar curvature. If $n=3$, the metric has constant sectional curvature.

[^0]: ${ }^{1}$ This is the usual Cauchy-Schwarz inequality. More generally, if S is any $(2,0)$-tensor then

 $$
 \begin{equation*}
 \left|S_{i j}\right|_{g}^{2} \geq \frac{1}{n}\left(g^{i j} S_{i j}\right)^{2} \tag{0.3}
 \end{equation*}
 $$

