M39: Topics in Riemannian Geometry Humboldt-Universität zu Berlin, Winter Semester 2023-24

Instructor:	Dr. Shubham Dwivedi Institut für Mathematik (Rud. 25) Room 1.309 dwivedis@hu-berlin.de
Website:	https://s-dwivedi.github.io/TopicsRiemGeom2023.html
Moodle:	eq:https://moodle.hu-berlin.de/course/view.php?id=123761 enrolment key: riemann
Lectures:	Mondays 11:15 - 12:45 in Room 3.007 Rudower Chaussee 25 (RUD25)
Problem Sessions:	every alternate Mondays starting 30th October 2023 1:15 - 2:45 in 1.114 Rudower Chaussee 25 (RUD25)
Language:	English

Short Description

This course can be seen as a "second" course in Riemannian geometry. The target audience is advanced Bachelors's and Masters's students and PhD students and basic knowledge of Riemannian geometry and computations involving tensor calculus will be assumed. A (preliminary) discussion of topics is outlined below.

Topics to be covered

- (1) Basics of Riemannian geometry and Ricci calculus with emphasis on calculations in local coordinates. Curvature-type tensors.
- (2) Compraison theorems in Riemannian geometry.
- (3) The Bochner technique and its applications.

The aforementioned topics are much more than what we'll actually be able to cover in the course.

Grading

The grades in the course will be decided either by an oral exam or by a typed-up short report on a mutually-decided topic at the end of the semester. We'll decide the exact format once the course starts.

Literature

There are excellent introductions and more advanced texts on Riemannian geometry and the materials presented in the class will be followed from the references mentioned below. In particular, [dC92], [Pet16], [Jos17], [CLN06] and [CE08] are good sources for self-study as well.

References

- [CE08] Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, Reprint of the 1975 original, Providence, RI: AMS Chelsea Publishing, 2008 (English). ↑1
- [CLN06] Bennett Chow, Peng Lu, and Lei Ni, *Hamilton's Ricci flow*, Grad. Stud. Math., vol. 77, Providence, RI: American Mathematical Society (AMS), 2006 (English). ↑1
- [dC92] Manfredo Perdigão do Carmo, Riemannian geometry. Translated from the Portuguese by Francis Flaherty, Boston, MA etc.: Birkhäuser, 1992 (English). ↑1

- [Jos17] Jürgen Jost, Riemannian geometry and geometric analysis, 7th edition, Universitext, Cham: Springer, 2017 (English). ↑1
- $[Pet16] Peter Petersen, Riemannian geometry, 3rd edition, Grad. Texts Math., vol. 171, Cham: Springer, 2016 (English). \\ \uparrow 1$