The covariant derivative

To differentiate tensors we need a connection.
Def:- Let $\varepsilon \xrightarrow{\pi} M$ be a v.b. A connection on E is a map

$$
\nabla: \delta(M) \times \Gamma(E) \rightarrow \Gamma(E) \text { st. }
$$

1) $\nabla_{x} y$ is $C^{\infty}(M)$-linear ie e X.
2) $\nabla_{x} y$ is R-linear is y.
3) For $f \in C^{\circ}(M), \nabla$ satiafies the Leibniz rule.

$$
\nabla_{x}(f y)=x(f) y+f \nabla_{x} y
$$

$\nabla_{x} y$ is the covariant derivative of y ire the direction of x.
∇ on E is completely determined by its Christoffel symbols $\Gamma_{i j}^{k}$ which ie local coordinates can be defenced as

$$
\nabla_{\partial_{i}} E_{j}=\Gamma_{n j}^{k} E_{k}
$$

Lemma: - If TM is the tangent luendle the we can define connections on all tensor luundles $\tau_{l}^{k}(M)$ sid.

1. $\nabla_{x} f=x(f)$.
2. $\nabla_{x}(F \otimes G)=\left(\nabla_{x} F\right) \otimes G+F \otimes\left(\nabla_{x} G\right)$.
3. $\nabla_{x}(+r y)=\operatorname{tr}\left(\nabla_{x} y\right)$. for all traces over any index of Y.

In local coordinates

$$
\left(\nabla_{x} F\right)=\left(\nabla_{p} F_{i_{1} \ldots i_{k}}^{j_{1} \ldots j_{l}}\right) \partial_{j_{1}} \otimes \ldots \otimes \partial_{j_{l}} \otimes d x^{i_{1}} \not \ldots \otimes d x^{i_{k}} X^{p}
$$

and also

Def Gradient
Let $f \in C^{\infty}(M) . \quad d f \in \Gamma^{\sim}\left(T^{*} M\right)$
$(d f)^{\#} \in \Gamma(T M)$ is called the gradient of f w.r.t. g and is denoted by ∇f.
in local coordinates, $d f=\frac{\partial f}{\partial x^{j}} d x^{d}$

$$
\begin{aligned}
(\nabla f) & =(\nabla f)^{i} \frac{\partial}{\partial x^{i}} \\
& =\left(g^{i j} \frac{\partial f}{\partial x^{j}}\right) \frac{\partial}{\partial x^{i}}
\end{aligned}
$$

example $s^{2} w /$ spherical coordinates. ratio metric on $s^{2}, g=(d \phi)^{2}+\sin ^{2} \phi(d \theta)^{2}$ in these coordinate.

$$
\begin{aligned}
\nabla f= & \frac{\partial f}{\partial \theta} g^{\theta \theta} \frac{\partial}{\partial \theta}+\frac{\partial f}{\partial \phi} g^{\phi \theta} \frac{\partial}{\partial \theta} \\
& +\frac{\partial f}{\partial \phi} g^{\theta \phi} \frac{\partial}{\partial \phi}+\frac{\partial f}{\partial \phi} g^{\phi \phi} \frac{\partial}{\partial \phi}
\end{aligned}
$$

ans $g\left(\frac{\partial}{\partial \phi}, \frac{\partial}{\partial \phi}\right)=1, g\left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi}\right)=0$

$$
g\left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right)=\sin ^{2} \phi
$$

The Levi-Civita Connection

Let $\left(M_{1}, g\right)$ Riemm. mfld.
Qefn A connection ∇ on TM is said to be compatible withg if

$$
\nabla g=0 .
$$

(iyg is parallel)

$$
\begin{gathered}
\text { If } \nabla_{g}=0=0 \quad \nabla_{x} g=0 \quad f \quad x \\
\Leftrightarrow \quad\left(\nabla_{x} g\right)(Y, z)=0 \quad \text { f } Y, z, \\
\Delta=D(g(y, z))-g\left(\nabla_{x} y, z\right)-g\left(y, \nabla_{x} z\right) \\
=0
\end{gathered}
$$

In local coordinates,

$$
\begin{aligned}
\left(\nabla_{\underline{\partial}} g\right)_{i j} & =\frac{\partial g_{i j}}{\partial x^{R}}-\Gamma_{k i}^{l} g_{i j}-\Gamma_{k j}^{l} g_{i i} \\
\therefore 0 \quad \bar{\nabla} g & =0 s=0 \\
\frac{\partial g_{i j}}{\partial x^{R}} & =\Gamma_{R i}^{l} g_{i j}+r_{R j}^{l} g_{i l} \quad \forall i, j, k
\end{aligned}
$$

Recall : \rightarrow The torsion T^{∇} of a connection ∇ on TM is

$$
T^{\nabla}(x, y)=\nabla_{x} y-\nabla_{y} x-[x, y]
$$

The [Fundamental Theorem of Riemannian Geometry]
Let $\left(M^{n}, g\right)$ be Riemm. Then $\exists!$ one--action ∇ that is both metric compatibly and torsion-free. ∇ is called the Levi-Givita connection.

Proof: \rightarrow Weill show that it must be unique y it exists. by Deriving a formula for it (Koszul formula).

Let $x, y, z \in \Gamma(T M)$

$$
x(g(y, z))=g\left(\nabla_{x} y, z\right)+g\left(y, \nabla_{x} z\right)
$$

$$
z(g(y, x))=g\left(\nabla_{2} y, x\right)+g\left(y, \nabla_{z} x\right)
$$

$\operatorname{ano} \because T^{\nabla}=0$

$$
\begin{aligned}
\Rightarrow \quad \nabla_{x} y-\nabla_{y} x & =[x, y] \\
\nabla_{z} x-\nabla_{x} z & =[z, x] \\
\nabla_{y} z-\nabla_{z} y & =[y, z]
\end{aligned}
$$

\therefore we get

$$
\begin{aligned}
& x(g(y, z))+ y(g(x, z))-z(g(x, y)) \\
&= 2 g(\nabla x y, z)+g(y,[x, z])+g(z,[y, x]) \\
&-g(x,[z, y]) \\
& \Rightarrow g\left(\bar{V}_{x} y, z\right)=\frac{1}{2}\left[\begin{array}{rl}
x & +g(y, z))+y(g(x, z)) \\
& -z(g(x, y)) \\
& g(y,[x, z])- \\
& g(z,[y, x])+g(x,[z, y))]
\end{array}\right.
\end{aligned}
$$

So $\nabla_{x} y$ is determined uniquely.
Define ∇ by this formula and show that ∇ is compatible and torsion free.

- in local coovinates, the Christoffel symbols of $\nabla^{L C}$ are (for $x=\partial_{i}$

$$
\left.\begin{array}{l}
y=\partial_{j} \\
z=\partial_{k}
\end{array}\right]
$$

$$
\Gamma_{i j}^{m} g_{m k}=\frac{1}{2}\left[\frac{\partial}{\partial x^{i}} g_{j k}+\frac{\partial}{\partial x^{j}} g_{i k}-\frac{\partial}{\partial x^{k}} g_{i j}\right]
$$

$$
\Rightarrow r_{i j}^{k}=\frac{1}{2} g^{k)}\left[\frac{\partial g_{i \ell}}{\partial x^{j}}+\frac{\partial g_{j l}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{l}}\right]
$$

Well use this formula frequently.

Orientation

If M is orientable, then a choice of such a cone or equivalently, a choice of nowhere zero n-form is called an orientation for M.

Such a form μ is called a volume form on μ. Two volume forms $\mu, \widetilde{\mu}$ corresponding to the Jame orientation $\Longleftrightarrow \mu=f \widetilde{\mu}$ for some $f \in C^{\infty}(M)$ s.t. f is everywhere positive.

Let M be orientable ans have k-connect-- ed components then $\exists 2^{k}$ orientations on \mathcal{M}.

If M^{n} is oriented, compact, we con integrate n-forms on $M . \int_{M} w \in \mathbb{R}$

$$
w \in \Omega^{n}(M)
$$

Stokes Theorem If $\partial M=\phi$ then $\int_{M} d \sigma=0$

$$
\begin{aligned}
& \text { If } F: M \xrightarrow{\text { diffeo }} N \\
& \omega \in \Omega^{n}(N)=0 F^{*} \omega \in \Omega^{n}(M) \\
& \Rightarrow \begin{array}{l}
\int F^{*} \omega= \\
M
\end{array}
\end{aligned}
$$

Seen:-
A manifold w/ volume form is an oriented mild M together w/ a particular choice μ (representative of the equivalence-class of the orientation).

If M is compact the we can integrate functions on M by 'defining

$$
\int_{M} f:=\int_{M} f \mu
$$

whose value Depends on the choice of μ

Let (M, U) be a manifold w/ volume form Define the divergence div: $\Gamma(T M) \rightarrow C^{\infty}(M)$ Linear

$$
\text { by } \begin{aligned}
\mathcal{L}_{x} u & =d(x د \mu)+\underbrace{x \Delta d \mu}_{=0} \\
& =(\operatorname{div} x) \mu
\end{aligned}
$$

(Depends on μ)

Notice:- $\operatorname{div} X=00 \Rightarrow \mathcal{L} \times M=0$

$$
\Leftrightarrow \quad \theta_{t}^{*} \mu=\mu \quad \text { where }
$$

θ_{t} is the flow of X.
$\Leftrightarrow M$ is invariant under flow of x.

If M compact,

$$
\operatorname{Vol}(M)=\int_{M} 1=\int_{M} 1 \cdot M
$$

Suppose $\operatorname{Siv} X=0=0$

$$
\begin{aligned}
& \int_{\theta_{t}(M)} \mu=\operatorname{vol}\left(\theta_{t}(M)\right)=\int_{M} \theta_{t}^{x} \mu=\int_{M} \mu=\operatorname{vol}(M) \\
& =0 \operatorname{vol}\left(\theta_{t}(M)\right)=\operatorname{vol}(M)
\end{aligned}
$$

:. flow of a Divergence-free $v . f$. preserves the volume.

Divergence Theorem

Let $X \in \Gamma(T M),(M, \mu)$ be compact
then $\int_{M}(\operatorname{div} x)=0$ as

$$
\int_{M}(\operatorname{div} X) \mu=\int_{M} d(X \perp \mu)=0 \text { by Stokes' } \begin{gathered}
\text { Tm } .
\end{gathered}
$$

Let (M, g) be an oriented Riemannian manifold. Then \exists a canonical volume form μ on (M, g) Defined by the requirement that

$$
M\left(e_{1}, \ldots, e_{n}\right)=1 \text { whenever }\left\{e_{1}, \ldots, e_{n}\{\right.
$$

is an oriented orthonormal basis of $\left(T_{p} M, g_{p}\right)$. i.e., giver a local oriented $0 . n$. frame for M $\left\{e_{1}, \ldots, e_{n}\{\right.$,

$$
\mu=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n}
$$

$\mu=\sqrt{\operatorname{detg}} d x^{\prime} \wedge \ldots \wedge d x^{n}$ in any local coordinates $\left(x^{1}, x^{2}, \ldots, x^{n}\right)$.

- Divergence theorem holds for any manifold
$w /$ volume \Rightarrow also holds for oriented Rem. vol. form and symplectic manifolds.

Curvature of the Levi-Civita
connection
We call R, as the Riemann curvature tensor of

$$
\begin{aligned}
R(x, y) z & =\nabla_{x} \nabla_{y} z-\nabla_{y} \nabla_{x} z-\nabla_{[x, y]} z \\
& =-R(y, x) z
\end{aligned}
$$

Remark:- $R^{\nabla}=0$ and $T^{\nabla}=0$ ifs \exists local parallel coordinate
frames.

One defn'f being flat for amy connection io $R^{\nabla}=0$
ord for a Riem. mfld we defined flat as "locally isometric to $\left(\mathbb{R}^{n}, \hat{g}\right)$.

For the Riemannian curvature of Leri-Givita conn, the two notions of flatness are the some.

Symmetries of R

$$
R(x, y, z, w):=g(R(x, y) z, w)
$$

\downarrow $(4,0)$ tensor obtained from $(3,1) R$ by musical isomorphisms.

$$
\begin{gathered}
R\left(\partial_{i}, \partial_{j}\right) \partial_{k}=R_{i j k}^{l} \partial_{l} \\
R\left(\partial_{i}, \partial_{j}, \partial_{k}, \partial_{m}\right)=R_{i j k m} \\
R_{i j k m}=R_{i j k}^{l} \partial_{l m}
\end{gathered}
$$

Prop:-
a) $R(x, y, z, w)=-R(y, x, z, w)$
b) $R(x, y, z, w)=-R(x, y, w, z)$
c) $R(x, y, z, w)+R(y, z, x, \omega)+R(z, x, y, \omega)$
d) $R(x, y, z, w)=R(z, \omega, x, y)$.
a) is always true and $\omega / b)$ allows us to see $R \in \Gamma\left(n^{2} \tau^{*} M \otimes n^{2}+M\right)$ i.e, as a symmetric bilinear forms on the space of 2 -forme.
b) follows from metric compatibility, $\nabla g=0$
c) is true for any torsion free connection on TM. It is called the First Bianchi identity.
d) follows from a) , b) and c).

Prog f:-0 a) done
b) since $\nabla g=0=0$

$$
\begin{align*}
& y(g(z, z))=2 g\left(\nabla_{y} z, z\right) \\
& x(y(g(z, z)))=2 \times\left(g\left(\nabla_{y} z, 2\right)\right) \\
&=2 g\left(\nabla_{x} \nabla_{y} z, z\right) \tag{1}
\end{align*}
$$

$$
\begin{align*}
+ & 2 g\left(\nabla_{y} z, \nabla_{x} z\right) \\
y(x(g(z, z)))= & 2 g\left(\nabla_{y} z, \nabla_{x} z\right)+ \\
& 2 g\left(z, \nabla_{y} \nabla_{x} z\right)- \tag{2}\\
{[x, y](g(z, z))=} & 2 g\left(z, \nabla_{[x, y]}, z\right) \tag{3}
\end{align*}
$$

(1) $+(2)-(3)$

$$
\begin{aligned}
& x(y(g(z, z)))-Y(x(g(z, z)))-[x \cup y(g(z, z)) \\
& =0 \\
& =2 R(x, x, z, z)=0
\end{aligned}
$$

$=0$ polorize to get (b).
c) Want to shows that

$$
R(x, y) z+R(y, z) x+R(z, x) y=0
$$

expan̄ and use torsion-free ani use

Jacobi identity for $[\cdot, 0]$.
d) Write identity c) ie 4 ways.

Sectional Curvature

Let (M, g) be Riemann.
Given $X_{p}, Y_{p} \in T_{p} M$

$$
\begin{aligned}
& \left|x_{p} \wedge y_{p}\right|_{g_{p}}^{2}=\left|x_{p}\right|_{g_{p}}^{2}\left|y_{p}\right|_{g_{p}}^{2}-g_{p}\left(x_{p}, y_{p}\right)^{2} \\
& |x \wedge y|^{2}=|x|^{2}|y|^{2}-\langle x, y\rangle^{2}
\end{aligned}
$$

Deft:- Let L_{p} be a 2-dimensional subspace of $T_{p} M(n \geq 2)$. Define the sectional curvature $K_{p}\left(L_{p}\right)$ of (M, g) at p in
"Lp direction" by

$$
K_{p}\left(L_{p}\right)=\frac{R\left(X_{p}, y_{p}, y_{p}, X_{p}\right)}{\left|X_{p} \cap y_{p}\right|^{2}}
$$

for any basis X_{p}, Y_{p} of L_{p}.
(denom, not zero as X_{p}, Y_{p} are basis).
if

$$
\begin{aligned}
\tilde{X} & =a X+b y \\
\tilde{Y} & =c X+d y \\
\tilde{x} \wedge \tilde{Y} & =(a d-b c) X \wedge Y
\end{aligned}
$$

Show that

$$
\frac{R(\tilde{x}, \tilde{y}, \tilde{y}, \tilde{x})}{|\tilde{x} \wedge \tilde{y}|^{2}}=\frac{R(x, y, y, x)}{|x \sim y|^{2}}
$$

If $n=2, L_{p}=T_{p} M \quad \forall \quad \beta \in M$
\Rightarrow sectional curvature is just a smooth
function on M.

Lemma:- The sectional curvature determines the Riemann curvature ant vice-versa.
Precisely, suppose $V^{n}(n \geq 2)$ is a \mathbb{R}-inner product space and Q and \tilde{R} be two trilinear maps st.
$\langle R(x, x, z), w\rangle$ and $\langle\widetilde{R}(x, y, z), w\rangle$ ane skew in X, Y, skew ie $Y, 2$ and satisty $1^{\text {st }}$ Bianchi identity.

Let $x, y \in V$ be linearly idependent.
Let $\sigma=\operatorname{spon}\left\{x_{1} y\right\}$
Define $k(\sigma)=\frac{\langle R(x, y, y), x\rangle}{\left.|x \wedge y|\right|^{2}}$

$$
\tilde{K}(\sigma)=\langle\tilde{R}(x, y, y), x\rangle
$$

$|x \wedge y|^{2}$
if $k=\widetilde{K} \quad \forall \sigma \leq V$ thew $R=\widetilde{R}$.

Lemma Let V be a real vector space w/ $\operatorname{dim} v \geq 2$ and R and \widetilde{R} be trilinear maps $V \times V \times V \longrightarrow V$ satisfying

$$
\begin{aligned}
& \langle R(x, y, z), w\rangle=(x, y, z, w) \\
& \langle\widetilde{R}(x, y, z), w\rangle=(x, y, z, w)^{\sim}
\end{aligned}
$$

have the following symmetries :-

$$
\begin{aligned}
(x, y, z, w) & =-(y, x, z, \omega)=-(x, y, w, z) \\
& =(z, \omega, x, y)
\end{aligned}
$$

and $(x, y, z, \omega)+(y, z, x, \omega)+(z, x, y, w)=0$ same for \sim.
Let x, y be Linearly independent. Let $\sigma=\operatorname{span}\{x, y\}$ Define $\quad k(\sigma)=\frac{(x, y, y, x)}{|x \wedge y|^{2}}$

$$
\tilde{k}(\sigma)=\frac{(x, y, y, x)^{2}}{|x \wedge y|^{2}}
$$

If $\quad \widetilde{K}(\sigma)=K(\sigma) \quad \forall$ 2-dimensional subspace $\sigma \subseteq v$ then $R=\widetilde{R}$.

Proof By hypo. $(x, y, y, x)=(x, y, y, x)^{\sim}$

$$
f x, y .
$$

polarize $(x+y, z, z, x+y)=(x+y, z, z, x+y)^{2}$

$$
\begin{aligned}
& \Rightarrow(x, z, z, y)+(y, z, z, x)=(x, z, z, y)^{2} \\
&+(y, z, z, x)^{2} \\
& \Rightarrow 2(x, z, z, y)=2(x, z, z, y)^{2}
\end{aligned}
$$

By rymmetrier

$$
\Rightarrow \quad(x, z, z, x)=(x, z, z, y)^{\sim}
$$

polarize again, $z \longmapsto z+T$

$$
\begin{aligned}
& (x, z, w, y)+(x, w, z, y)= \\
& \quad(x, z, w, y)^{\sim}+(x, w, z, y)^{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow(x, z, \omega, y)-(x, z, w, y)^{\sim}= \\
&-(x, \omega, z, y)+(x, \omega, z, y)^{\sim} \\
&=(w, x, z, y)-(\omega, x, z, y)^{\sim}
\end{aligned}
$$

$\Rightarrow \sim$ is invariant under cyclic permutation

$$
\begin{aligned}
& x \longmapsto z \longmapsto \omega \longmapsto x \\
& =0 \quad \sum_{\substack{x \\
x, y, z}}(x, z, \omega, y)-(x, z, w, y)^{2} \\
& \quad \begin{array}{l}
\text { cyclic }
\end{array} \\
& =0 \quad 0(x, z, \omega, y)=3(x, z, \omega, y) \\
& =0 \quad 0=0 \\
& =0 \quad(x, z, w, y)=(x, z, w, y)^{\sim}
\end{aligned}
$$

$2^{\text {no }}$ Bianchi Identity

Let (M, g) be Riemanniom and R be the

Riemannian $(4,0)$ tensor. Then

$$
\begin{aligned}
& \left(\nabla_{u} R\right)(x, y, v, w)+\left(\nabla_{v} R\right)(x, y, w, u) \\
& +\left(\nabla_{w} R\right)(x, y, u, v)=0
\end{aligned}
$$

Io prove this, let $p \in M$ be arbitrary and choose Riemannian normal coordinates centred at $p .\left\{\frac{\partial}{\partial x^{\prime}}, \ldots, \frac{\partial}{\partial x^{n}}\{\right.$ is a local from

$$
\begin{aligned}
g_{i j}(p) & =\delta_{i j} \\
\left(\nabla_{\partial_{i}} \partial_{j}\right)_{p} & =\left.\Gamma_{i j}^{k}(p) \partial_{R}\right|_{p}=0
\end{aligned}
$$

Let X, Y, U, v, w be $\partial_{i}, \partial_{j}, \partial_{k}, \partial_{l}, \partial_{m}$ now

$$
\left(\nabla_{u} R\right)(x, y, v, w) \underset{\text { def n }}{=} U(R(x, y, v, w))
$$

$$
\begin{aligned}
& -R\left(\nabla_{u} x, y, v, w\right) \\
& -\cdots-R\left(x, y, v, \nabla_{u} w\right)
\end{aligned}
$$

But $\nabla_{u} \times, \ldots, \nabla_{u} W=0$ at p in normal coordinates

$$
=0 \quad \text { at } p, \quad\left(\nabla_{u} R\right)(x, x, v, w)=U(R(x, y, v, w))
$$

now

$$
\begin{array}{r}
U(R(x, y, v, w))=u(g(R(x, y) v, w)) \\
=u\left(g\left(\nabla_{x} \nabla_{y} v-\nabla_{y} \nabla_{x} v-\bar{\nabla}_{[x, y]} v, w\right)\right) \\
\sim_{0} \text { as coordinate } \\
v \cdot f
\end{array}
$$

metric compatibility

$$
\begin{aligned}
& \begin{array}{l}
q \\
=
\end{array}\left(\nabla_{u} \nabla_{x} \nabla_{y} v, \omega\right)-g\left(\nabla_{u} \nabla_{y} \nabla_{x} v, \omega\right) \\
&-g\left(\nabla_{x} \nabla_{y} v-\nabla_{y} \nabla_{x} v, \nabla_{u} \omega\right) \\
&=0 \text { atp } \\
&=\left(\nabla_{u} R\right)(x, y, v, \omega)(p)=u(R(x, y, v, \omega))(p)
\end{aligned}
$$

$$
\begin{aligned}
& =U(R(v, w, x, y), w)(p) \\
& =g\left(\nabla_{u} \nabla_{v} \nabla_{w} x, y\right)(p) \\
- & g\left(\nabla_{u} \nabla_{w} \nabla_{v} x_{1} y\right)(p)
\end{aligned}
$$

now cyclically permute U, V and W and then add to get the $2^{\text {nd }}$ Bioncli identity.

Remark:- If $d \bar{V}$ is the exterior covariant rerinatuie then the $2^{\text {no }}$ Biamelie identity io $\quad d \nabla R=0$. (thru es for any connection on any vector buridle).

Other notions of curvature from Rm

Aside :- Let $(V,\langle\rangle$,$) be an IPS and$ $\left\{e_{1}, \ldots, e_{n}\{\right.$ be a basis.
$A: V \longmapsto V$ be a linearmap.

$$
A e_{i}=A_{i}^{j} e_{j} \text {. Then } \operatorname{Tr}(A)=A_{i}^{i} \in \mathbb{R}
$$

Notice

$$
\begin{aligned}
g^{i j}\left\langle A e_{i}, e_{j}\right\rangle & =g^{i j}\left\langle A_{i}^{l} e_{l}, e_{j}\right\rangle \\
& =g^{i j} A_{i}^{l} g_{i j}=A_{i}^{i}=\operatorname{tr}(A)
\end{aligned}
$$

Thess

$$
\operatorname{tr}(A)=g^{i j\left\langle A e_{i}, e_{j}\right\rangle}
$$

more generally is $B_{i j}$ is a bilinear form Define $\quad \operatorname{Tr}_{g}(B)=g^{i j} B_{i j}$.

Let (M, g) Riemannion and fix $X_{p}, Y_{p} \in T_{p} M$ Define $A_{p}: T_{p} M \longrightarrow T_{p} M$ be

$$
A_{p}\left(z_{p}\right)=R\left(z_{0}, x_{0}\right) y_{p}
$$

$$
\operatorname{Tr}\left(A_{p}\right)=g\left(A_{p} e_{i}, e_{j}\right) g_{\rho}^{i j}
$$

for any basis e_{1}, \ldots, e_{n} of $T_{p} M$.

$$
\begin{aligned}
& =g\left(R\left(e_{i}, x_{p}\right) y_{1} e_{j}\right) g^{i j} \\
& =R\left(e_{i}, X_{p}, y_{p}, e_{j}\right) g^{i j}
\end{aligned}
$$

Deft The Riccitensor of g is the $(2,0)$ tensor Risc defined

$$
\operatorname{Ric}(x, y)=g^{i j} R\left(e_{i}, x, y, e_{j}\right)
$$

for any local frame $\left\{e_{1}, \ldots, e_{n}\right\}$
in local coordinates

$$
\begin{gathered}
R_{i c}=R_{j k} d x^{j} \otimes d x^{R} \text { where } \\
R_{j k}=R_{i j k 1} g^{i^{l}}
\end{gathered}
$$

Remark:- Ricci is symmetric.

Exercise:- Prove the previous remark.

What is the meaning of Rice?
Rice is determined by polarization from its associated quadratic form

$$
q(x)=\operatorname{Ric}(x, x)
$$

Let $\left\{e_{1}, \ldots, e_{n}\{\right.$ be a local 0 -n-frome

$$
\begin{aligned}
R_{i c}\left(e_{i}, e_{i}\right) & =g^{k 1} R\left(e_{R}, e_{i}, e_{i}, e_{l}\right) \\
& =\sum_{0 . n \cdot}^{n} R\left(e_{k}, e_{i}, e_{i}, e_{k}\right) \\
& =\sum_{k \neq i}^{n} R\left(e_{k}, e_{i}, e_{i}, e_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\sum_{k=1}^{n}\right)<\left(e_{k} \cap e_{i}\right) \\
& R \neq i \\
& \text { Y 2-plane spanned } \\
& \text { by } e_{R} \text { andes }
\end{aligned}
$$

sectional curvature
Thus Ric $\left(e_{i}, e_{i}\right)$ is $(n-1)$ (average of all sectional curvatures of 2-plarnes containing $e_{i .}$.

Scalar Cuvivatue

$$
\mathbb{R}=\operatorname{Trg}_{g}\left(R_{i c}\right)=g i j R_{i j}
$$

So R is a smooth function on M.

$$
R=n \text { (average of Ricci curvature) }
$$

Special Cases:-

$$
\begin{array}{ll}
n=1: & R_{i j k 1}=0 \\
n=2: & R_{i c i}, R_{j k}=g^{i j} R_{i j k 1} \\
R_{11} & =g^{i 1} R_{i 11 l}=g^{22} R_{2112}=g^{22} R_{1221} \\
R_{22}=g i 1 R_{i 22 l}=g^{11} R_{1221}=g^{11} R_{1221} \\
R_{12}=g^{i l} R_{i 12 l}=g^{12} R_{2121}=-g^{12} R_{1221}
\end{array}
$$

Scalar, $R=g^{11} R_{11}+2 g^{12} R_{12}+g^{22} R_{22}$

$$
\begin{aligned}
& =2\left(g^{11} g^{22}-\left(g^{12}\right)^{2}\right) R_{1221} \\
& =2 R_{1221} \cdot \operatorname{det}\left(g^{-1}\right) \\
& =\frac{1}{\operatorname{det}(g)} 2 R_{1221}=2 \kappa
\end{aligned}
$$

\therefore for $n=2 \quad R=2 K$

Def (M, g) is called Einstein if \exists $\lambda \in C^{\infty}(M)$ st

$$
R_{i c}=\lambda g
$$

Suppose (M, g) is Einstein. Then

$$
\begin{aligned}
& R=g^{i j} R_{i j}=g^{i j} \lambda g_{i j}=n \lambda \\
&=\lambda \quad \lambda=\frac{R}{n} \\
& \therefore R_{i c}=\frac{R}{n} g
\end{aligned}
$$

Weill see examples of Einstein metrics. special case:- Rico $=0$ or Ricci-flat.

Aside:- In GR, the natural equation is

$$
\text { Ric }-\frac{R}{2} g=T \text {-prescribed RHS }
$$

ζ stress_energy tensor Einstein tensor

Suppose $T=0 \Rightarrow \quad R_{i c}=R / 2 g$ tracing $=0$

$$
\begin{aligned}
R=\frac{n R}{2}=0 \quad & n \neq 2 \Rightarrow \\
& R=0 \text { and }
\end{aligned}
$$

$$
R_{i c}=0 \text {. }
$$

\therefore if $n>2$ and $T=0$ then M must be Ricciflat.

Exc. Prove the following:-
(1) $\nabla_{l} R_{l j m k}=\nabla_{k} R_{j m}-\nabla_{m} R_{j k}$
(2) $\operatorname{div}\left(R_{c}\right)=\frac{1}{2} d R$.

Lemma:- Diagonalize R on $\left(M^{3}, g\right)$ w.r.t. basis $\left\{e_{2} \wedge e_{3}, e_{3} \wedge e_{10} e_{1 \wedge e_{2}}\left\{\right.\right.$ of $n^{2} \pi M^{3} \omega /\left\{e_{1}, e_{2}, e_{3}\right\}$ an 0.n.b. of $A M$. Suppose that w.r.t. basis R is a diagonal matrix $w /$ entries $\lambda_{1}, \lambda_{2}, \lambda_{3}$. Then w.r.f.
$\left\{e_{1}, e_{2}, e_{3} \xi\right.$ we have $\left\{e_{1}, e_{2}, e_{3}\right\}$ we have

$$
R_{c}=\frac{1}{2}\left[\begin{array}{ccc}
\lambda_{2}+\lambda_{3} & 0 & 0 \\
0 & \lambda_{3}+\lambda_{1} & 0 \\
0 & 0 & \lambda_{1}+\lambda_{2}
\end{array}\right]
$$

and the scalar curvature $R=\lambda_{1}+\lambda_{2}+\lambda_{3}$.
Proof. Exercise

Lemma:- Let $\left(M^{n}, g\right)$ le an Einstein manifold $w / n \geq 3$. Then M has constant scalar awwature. If $n=3$ the g has constant sectional curvature.

Proof exercise
Def n Constant curvature metrics.
\mathbb{R}^{n} w/ Euclidean metric has constant sec. curvature 0 . $S_{R}^{n}=\left\{x \in \mathbb{R}^{n+1},|x|=R\{w /\right.$ the round metric has constant sectional armature $\frac{1}{R^{2}}$.
H_{R}^{n}, the hyperbolic space of radius R which is an Open ball of radius R ie \mathbb{R}^{n} w/ the metric

$$
g_{i j}(x)=4 R^{4} \delta_{i j}
$$

$$
\left(R^{2}-|x|^{2}\right)^{2}
$$

has constant curvature $-1 / R^{2}$.

Any complete, simply connected Riemm. n-fold w/ constant sectional curvature is isometric to are of the alcove depending on the sign.

