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1. Introduction

The notion of calibrations and calibrated submanifolds originates from the seminal paper
[HL82] of Harvey and Lawson. Apart from the rich theory of calibrated submanifolds, the
link between calibrated geometry and gauge theory (see, e.g., [Lot22] for some examples)
has been the reason for a lot of work on special Lagrangian submanifolds in Calabi–Yau
manifolds, as well as some on (co-)associative and Cayley submanifolds in G2- and Spin(7)-
manifolds, respectively (see, e.g., [Lot05; Lot06a; Lot06b; Lot12] and the references therein).
The core of this thesis lies in constructing special Lagrangian submanifolds of the Calabi–
Yau manifold T ∗Sn with the Stenzel metric, as well as calibrated submanifolds of the
G2-manifold Λ2

−(T ∗X) (X4 = S4,CP2) and the Spin(7)-manifold S−(S4), both equipped
with the Bryant–Salamon metrics.

To begin with, we introduce the notions of calibrations, calibrated submanifolds and
holonomy, before discussing the four main examples of calibrated geometries. This includes a
short digression on the octonions and their relation to the Lie groups G2 and Spin(7), which
we use to collect different characterizations of (co-)associative and Cayley submanifolds
established in [HL82; KM05]. A brief insight into the classification of calibrations concludes
Section 2.

The third section gives a review of previous works that motivate this thesis, and is used to
fix our setup and notation. Inspired by the Harvey–Lawson bundle construction of special
Lagrangian submanifolds in Cn [HL82], Ionel–Karigiannis–Min-Oo [IKM05] described
similar constructions of (co-)associative submanifolds in R7 and Cayley submanifolds in R8.
The idea is to view the ambient manifold as the total space of a vector bundle over some
Euclidean space Rn, restricting it to an oriented immersed submanifold L ⊂ Rn and then
considering the total spaces of appropriate subbundles. More precisely, Harvey–Lawson
[HL82] viewed Cn ∼= T ∗Rn as the cotangent bundle and then considered the conormal bundle
N∗Lq. Similarly, Ionel–Karigiannis–Min-Oo [IKM05] viewed R7 ∼= Λ2

−(T ∗R4) as the space
of anti-self-dual 2-forms on R4 and R8 ∼= S−(R4) as the negative spinor bundle of R4. They
examined naturally defined subbundles E and F = E⊥ of Λ2

−(T ∗R4)|L2 of rank 1 and 2, and
V+ and V− = V ⊥+ of S−(R4)|L2 of rank 2. Later, Karigiannis–Min-Oo [KM05] generalized
these constructions to complete, nonflat, noncompact manifolds of special holonomy which
are total spaces of vector bundles over a compact base. In other words, they examined the
analogs of these submanifolds in the Calabi–Yau manifold T ∗Sn with the Stenzel metric, in
Λ2
−(T ∗X) (X4 = S4,CP2) with the Bryant–Salamon metric of holonomy G2 and in S−(S4)

with the Bryant–Salamon metric of holonomy Spin(7). The authors of [HL82], [IKM05] and
[KM05] proved the following results: First, the conormal bundle N∗L is special Lagrangian
in T ∗X if and only if Lq is austere in Xn = Rn, Sn. Second, the submanifold E (F ) is
associative (coassociative) in Λ2

−(T ∗X) if and only if L2 is minimal (negative superminimal)
in X4 = R4, S4,CP2. Third, the submanifold V± is Cayley in S−(X) if and only if L2 is
minimal in X4 = R4, S4. Inspired by Borisenko [Bor93], Karigiannis–Leung [KL12] further
generalized [IKM05] by “twisting” the subbundles by special sections of the complementary
bundles. They derived conditions on L and the sections in order to obtain calibrated
submanifolds of the Euclidean spaces Cn ∼= T ∗Rn, R7 ∼= Λ2

−(T ∗R4) and R8 ∼= S−(R4).
Section 4 represents the core of this thesis: We generalize the constructions in [KL12] to

complete, nonflat, noncompact manifolds of special holonomy. In other words, we twist
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the calibrated subbundles in T ∗Sn, Λ2
−(T ∗X) (X4 = S4,CP2) and S−(S4) constructed in

[KM05] by special sections. Our main results are contained in Theorem 4.1, Theorem 4.4
and Theorem 4.7. In Theorem 4.1, we find that twisting the conormal bundle N∗L by a
1-form µ ∈ Ω1(Lq) does not provide any new examples because the Lagrangian condition
requires µ to vanish. This differs from the case of R4 in [KL12], where the authors
found that the twisted conormal bundle is special Lagrangian in T ∗Rn if and only if µ is
closed and its symmetrized covariant derivative satisfies certain equations. Theorem 4.4
describes the (co-)associative case: We show that the bundle E twisted by a section
σ ∈ Γ(F ) is associative in Λ2

−(T ∗X) if and only if L2 is minimal in X4 = S4,CP2 and σ
is holomorphic. On the other hand, the complementary bundle F twisted by a section
η ∈ Γ(E) is coassociative if and only if L2 is negative superminimal in X4 and η is parallel.
Lastly, Theorem 4.7 proves that the bundle V+ twisted by a section ψ ∈ Γ(V−) is Cayley
in S−(S4) if and only if L2 is minimal in S4 and ψ is holomorphic. The conditions on
L2 and the sections σ ∈ Γ(F ), η ∈ Γ(E) and ψ ∈ Γ(V−) for the G2-manifold Λ2

−(T ∗X)
(X4 = S4,CP2) and the Spin(7)-manifold S−(S4) turn out to be the same as in the case
of R4 in [KL12]. However, in contrast to [KL12], none of the presented proofs rely on
identifications with the (purely imaginary) octonions. Instead, they are based on the
vanishing of certain (bundle-valued) differential forms, as established in [HL82; KM05].

Our findings demonstrate that the constructions of calibrated submanifolds in Euclidean
spaces in [KL12] cannot be entirely extended to the manifolds T ∗Sn, Λ2

−(T ∗X) (X4 =
S4,CP2) and S−(S4) considered in [KM05]. While the results for the two spaces of
exceptional holonomy are in line with the previous findings, the construction in T ∗Sn does
not provide any new examples. As in [KL12], the (co-)associative and Cayley subbundles
constructed in [KM05] allow deformations destroying the linear structure of the fiber, while
the base space L2 remains of the same type after twisting, namely minimal or negative
superminimal. This implies that the moduli space of calibrated submanifolds near a
calibrated subbundle of this kind not only contains deformations of the base L but also of
the fiber. In contrast, the special Lagrangian bundle construction in T ∗Sn is much more
rigid than in the case of T ∗Rn. Closing this final section, we point out potential future
studies on the existence of other types of deformations in the above three cases and the
possibility of finding analogous results for other manifolds of special holonomy.

Finally, Appendix A contains a tedious computation omitted in Section 4, Appendix B
gives a review of spin geometry which provides additional background for the Cayley
construction, and Appendix C presents the octonion multiplication table.
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2. Calibrated geometry

The purpose of this second section is to review calibrated geometry. This includes a short
motivation via minimal submanifolds, a brief introduction to holonomy, and the four
main examples of calibrated geometries. Additionally, we make a quick digression on the
octonions and their relation to the groups G2 and Spin(7), which we use to collect different
characterizations of (co-)associative and Cayley submanifolds derived in [HL82; KM05].

2.1. Minimal and calibrated submanifolds

Let us first address submanifolds of smooth manifolds.

Definition 2.1 ([Wen22, Sec. 4], [Joy07, Def. 4.1.1]). Let M,N be smooth manifolds and
f : N →M be a smooth map. We call f an immersion if the map Dpf : TpN → Tf(p)M
is injective for every p ∈ N . In that case, we say that N (or f(N) ⊂M) is an immersed
submanifold of M . If f is additionally injective with continuous inverse f−1 : f(N)→ N ,
we call it an embedding and N (or f(N) ⊂M) an embedded submanifold of M . Two
immersed submanifolds f : N → M and f ′ : N ′ → M are isomorphic if there exists a
diffeomorphism Ψ : N → N ′ such that f = f ′ ◦Ψ. If this is the case, we consider them to
be the same.

As for subsets L of M , we say that L is a (smooth) submanifold of M if it admits
a smooth structure such that the inclusion map L ↪→M is an embedding. It is common
to implicitly identify an immersed submanifold N of M with its image f(N) ⊂M and to
not mention f at all. This is reasonable for embedded submanifolds because f(N) is a
smooth submanifold of M [Wen22, Thm. 4.14] and the inclusion f(N) ↪→M is isomorphic
to f : N → M as N

f→ f(N) is a diffeomorphism. In particular, this shows that the
terms (smooth) submanifold and embedded submanifold are interchangeable. When dealing
with non-embedded immersed submanifolds, however, caution is required. If f has self-
intersections f(p) = f(q) ∈M for p 6= q, there are two possible scenarios: either f(N) has
singularities, that is, f(N) is not a submanifold of M , or f(N) is a nonsingular submanifold
of M with nontrivial multiple cover N

f→ f(N), which makes it impossible to reconstruct
N and f up to isomorphism from f(N). As an immersion is a local embedding [Wen22,
Thm. 4.11], we follow this convention nonetheless, but take it with a grain of salt. (See
[Wen22, Sec. 4] for more details.)

From now on, let (M, g) be a Riemannian manifold of dimension n and 1 ≤ k ≤ n− 1.

Definition 2.2 ([Lot22, Sec. 2.1]). Let N be an oriented immersed submanifold of M
with immersion f : N → M . A variation of N with compact support is a smooth
one-parameter family of immersions {ft : N →M}t∈(−ε,ε) for which there exists an open set
S ⊂ N with compact closure S such that f0 = f and ft|N\S = f |N\S for all t ∈ (−ε, ε). We
call N minimal if d

dtVol(ft(S))|t=0 = 0 holds for all variations {ft}t∈(−ε,ε) with compact

support S (depending on the variation).

Minimal submanifolds are characterized by a second-order nonlinear partial differential
equation on the immersion map of the submanifold (see also Remark 3.2) and are therefore
difficult to analyze. Additionally, N being minimal does not necessarily mean that it
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minimizes volume. The condition only requires N to be a critical point of the volume
functional, which is even satisfied by volume-maximizing submanifolds. These two issues
can be resolved by working with calibrated submanifolds instead, which were introduced
by [HL82].

Definition 2.3 ([Joy07, Def. 4.1.3], [Lot22, Sec. 2.3], [KL12, Sec. 1]). An oriented
tangent k-plane on M is an oriented k-dimensional vector subspace V of some tangent
space TpM to M . Given such a V , g|V together with the orientation on V gives a natural
volume form on V , which we denote by volV ∈ Λk(V ∗).

A k-calibration on M is a closed k-form ϕ ∈ Ωk(M) which satisfies ϕ|V ≤ volV for
all oriented tangent k-planes V on M . That is, dϕ = 0 and ϕ(e1, . . . , ek) ≤ 1 for all
orthonormal tangent vectors e1, . . . , ek to M . We call a k-dimensional oriented immersed
submanifold N of M calibrated by ϕ if ϕ|TpN = volTpN for all p ∈ N or, equivalently, if
for all p ∈ N , ϕ(e1, . . . , ek) = 1 for an oriented orthonormal basis e1, . . . , ek for TpN .

If M is the total space of a vector bundle over a base X and a calibrated submanifold N
is also the total space of a subbundle, we call N a calibrated subbundle of M . In this
context, a subbundle of M → X means a vector bundle N → L over a submanifold L of
X, whose fibers are subspaces of the corresponding fibers of M .

Before comparing this notion to minimal submanifolds, let us prove a lemma that will
play an important role when we look at the main examples of calibrated submanifolds and
the classification of calibrations. Whenever (Mn, g) is equipped with an orientation, the
Hodge star operator ∗ : Ωk(M)→ Ωn−k(M) provides a natural one-to-one correspondence
between its k-forms and (n− k)-forms. The Hodge dual ∗β of some β ∈ Ωk(M) is defined
as the unique (n− k)-form satisfying α ∧ (∗β) = 〈α, β〉 volM for all α ∈ Ωk(M). Here, 〈·, ·〉
denotes the standard inner product on Ωk(M) induced by g (see (B.2)) and volM stands
for the natural volume form on (M, g) determined by g and the orientation on M . The
operator is well-defined and depends on g and the orientation. (See [Joy07, Ch. 1.1.2] for
more details.) Now suppose e1, . . . , en is an oriented local orthonormal frame with dual
coframe e1, . . . , en and let β ∈ Ωk(M). Locally, we have

〈β, β〉 volM =
∑

σ∈Shk,n−k

β(eσ(1), . . . , eσ(k))
2 e1 ∧ · · · ∧ en

and

β ∧ (∗β) =
∑

σ∈Shk,n−k

(−1)|σ|β(eσ(1), . . . , eσ(k))(∗β)(eσ(k+1), . . . , eσ(n)) e
1 ∧ · · · ∧ en,

where Shk,n−k = {σ ∈ Sn | σ(1) < · · · < σ(k), σ(k + 1) < · · · < σ(n)} is the set of
(k, n− k)-shuffles. Comparing these formulas, we see that the Hodge dual satisfies

(∗β)(eσ(k+1), . . . , eσ(n)) = (−1)|σ|β(eσ(1), . . . , eσ(k)). (2.1)

Lemma 2.4 ([Lot22, Lemma 3.4]). Let (Mn, g) be an oriented Riemannian manifold and
ϕ ∈ Ωk(M) be a calibration whose Hodge dual ∗ϕ is closed. Then ∗ϕ ∈ Ωn−k(M) is a
calibration too. Moreover, an oriented tangent k-plane V ⊂ TpM is calibrated by ϕ if and
only if we can equip its orthogonal complement V ⊥ ⊂ TpM with an orientation so that it is
calibrated by ∗ϕ.
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Proof. Let ϕ ∈ Ωk(M) be a calibration with d(∗ϕ) = 0. Fix a point p ∈M and consider
n− k orthonormal tangent vectors ek+1, . . . , en at p. We can find e1, . . . , ek ∈ TpM such
that (e1, . . . , en) is an oriented orthonormal basis of TpM . Since (e1, . . . , en) is positively
oriented and ϕ is a calibration, (2.1) shows that

(∗ϕ)(ek+1, . . . , en) = ϕ(e1, . . . , ek) ≤ 1.

Thus, ∗ϕ ∈ Ωn−k(M) is a calibration.
Suppose V ⊂ TpM is an oriented tangent k-plane with oriented orthonormal basis

e1, . . . , ek ∈ TpM and its orthogonal complement V ⊥ is spanned by orthonormal tangent
vectors ek+1, . . . , en ∈ TpM . Then the terms ϕ(e1, . . . , ek) and (∗ϕ)(ek+1, . . . , en) can
only differ by a sign and are equal whenever (e1, . . . , en) is positively oriented. Hence,
V is calibrated by ϕ if and only if we have (∗ϕ)(ek+1, . . . , en) = ±1. After changing the
orientation on V ⊥ if necessary, the second condition is equivalent to V ⊥ being calibrated
by ∗ϕ.

Finally, we observe that calibrated submanifolds offer two key advantages over minimal
submanifolds: First, calibrated submanifolds are characterized by an algebraic condition
on the tangent vectors to N , which translates into a nonlinear partial differential equation
of only first-order on the immersion map. Second, they are always volume-minimizing in
the following sense:

Theorem 2.5 ([Lot22, Thm. 2.7]). Let N be a calibrated submanifold of M with immersion
f : N → M . Then N is minimal and volume-minimizing in the sense that Vol(S) ≤
Vol(ft(S)) for all variations {ft : N →M}t∈(−ε,ε) of N with compact support S. If N is
additionally compact, it is volume-minimizing in its homology class.

Proof. Suppose N is calibrated by ϕ ∈ Ωk(M) and {ft : N →M}t∈(−ε,ε) is a variation
of the immersion f : N → M with compact support S. Then the natural volume form
on N is given by volN = f∗ϕ ∈ Ωk(N). As f is an immersion, it is a local embedding.
Hence, we can find a partition of unity {(Uα, ψα)}α on S such that f |Uα : Uα → f(Uα) is a
diffeomorphism for all α. We compute

Vol(S) =

∫
S

volN =

∫
S
f∗ϕ =

∑
α

∫
Uα

ψαf
∗ϕ =

∑
α

∫
f(Uα)

(
ψα ◦ (f |Uα)−1

)
ϕ =

∫
f(S)

ϕ.

As ϕ is closed and ft|N\S = f |N\S , Stokes’ theorem gives∫
f(S)

ϕ−
∫
ft(S)

ϕ =

∫
∂K

ϕ =

∫
K
dϕ = 0,

where K ⊂M is the compact set enclosed by f(S) and ft(S). Combining this, we obtain

Vol(S) =

∫
f(S)

ϕ =

∫
ft(S)

ϕ ≤
∫
ft(S)

volft(S) = Vol
(
ft(S)

)
.

In particular, N must be minimal.
Now suppose N is compact and N ′ is homologous to N . Then

Vol(N) =

∫
N

volN =

∫
N
ϕ = [ϕ] · [N ] = [ϕ] · [N ′] =

∫
N ′
ϕ ≤

∫
N ′

volN ′ = Vol(N ′),

where [ϕ] · [N ] stands for the pairing between the cohomology class of ϕ in Hk(M) and
the homology class of N in Hk(M) (see [Lee03, Ch. 16] for more details).
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2.2. Calibrated geometry and holonomy

Before we come to the main examples of calibrations and calibrated submanifolds, let us first
introduce a notion which can serve as a hint for the existence of calibrated submanifolds,
called holonomy.

Definition 2.6 ([Kar20, Def. 5.1]). Let (Mn, g) be a Riemannian manifold with Levi-Civita
connection ∇ and fix a point p ∈ M . A loop based at p is a continuous and piecewise
smooth path γ : [0, 1]→M with γ(0) = γ(1) = p. Given such a loop, the parallel transport
map Pγ : Tγ(0)M → Tγ(1)M along γ with respect to ∇ lies in the group of isometries
O(TpM) as ∇g = 0. We define the holonomy group Holp(g) of g at p to be

Holp(g) = {Pγ : TpM → TpM | γ is a loop based at p} ⊂ O(TpM).

By the existence and uniqueness of parallel transport, we have PγPδ = Pγδ and
P−1γ = Pγ−1 for all loops γ, δ based at p, which proves that Holp(g) is indeed a sub-
group of O(TpM). After fixing an isomorphism TpM ∼= Rn, we can view Holp(g) as a
subgroup of the orthogonal group O(n). In fact, the conjugacy class of that subgroup
is independent of the choice of isomorphism, which justifies switching between viewing
Holp(g) as a subgroup of O(TpM) and O(n) without choosing an explicit isomorphism
first. Moreover, we have Holp(g) ∼= Holq(g) whenever p, q ∈M lie in the same connected
component of M . Combining this, we see that for every connected component Cα of M ,
there exists a unique (up to conjugation) subgroup Hα of O(n) such that Holp(g) ∼= Hα

for all p ∈ Cα. (See [Kar20, Prop. 5.2].) We say that (M, g) has holonomy in (equal to) a
subgroup G of O(n) if we have Hα ⊂ G (Hα = G) for every α. Furthermore, we refer to
the smallest group G ⊂ O(n) fulfilling this condition as the holonomy group of (M, g)
and denote it by Hol(g). Whenever Hol(g) is a proper subgroup of O(n) (or SO(n) if M is
orientable), we call (M, g) a manifold of reduced or special holonomy.

This concept obeys the following central principle.

Proposition 2.7 (Holonomy principle, [Joy07, Prop. 2.5.2]). Let (M, g) be a connected
Riemannian manifold with Levi-Civita connection ∇ and fix a point p ∈ M . Then we
obtain a natural connection ∇ on the vector bundle E = (TM)⊗s⊗ (T ∗M)⊗t and a natural
action of Holp(g) on its fiber Ep via the pullback.

If S ∈ Γ(E) is a parallel (s, t)-tensor, then Holp(g) leaves S|p invariant. Conversely,
if Holp(g) leaves Sp ∈ Ep invariant, there exists a unique parallel tensor S ∈ Γ(E) that
satisfies S|p = Sp.

Proof. Suppose S ∈ Γ(E) is a parallel (s, t)-tensor. That is, we have P ∗α(S|α(1)) = S|α(0)
for every piecewise smooth path α : [0, 1]→M . In particular, S satisfies P ∗γ (S|p) = S|p for
every loop γ based at p, which proves that S|p is invariant under Holp(g).

Conversely, suppose Sp ∈ Ep is fixed by Holp(g). Let q ∈ M be any point. As M is
connected, we can find piecewise smooth paths α, β : [0, 1]→M with α(0) = β(0) = q and
α(1) = β(1) = p. Then αβ−1 is a loop based at p and therefore Pαβ−1 = PαP

−1
β ∈ Holp(g).

Thus, we have

P ∗α(Sp) = (PαP
−1
β Pβ)∗(Sp) = P ∗β

(
(PαP

−1
β )∗(Sp)

)
= P ∗β (Sp),
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which proves that P ∗α(Sp) ∈ Eq depends only on q and is independent of the choice of
α. Due to this, we can define the tensor S ∈ Γ(E) by S|q = P ∗α(Sp) ∈ Eq, where α is
any piecewise smooth path from q to p. By definition, this is the unique parallel tensor
satisfying S|p = Sp.

Remark 2.8. Throughout this thesis, we always work with this natural connection ∇ on E,
unless stated otherwise.

We can use this concept to develop a promising approach for finding calibrated sub-
manifolds: To begin with, let us assume that (M, g) is connected and pick a point p ∈M .
Suppose ϕp ∈ Λk(T ∗pM) is nonzero and Holp(g)-invariant. Then we can rescale ϕp such that
ϕp|V ≤ volV holds for all oriented tangent k-planes V ⊂ TpM at p with equality for at least
one of them. Whenever V ⊂ TpM is calibrated by ϕp, so is (Pγ)∗V for all Pγ ∈ Holp(g)
because ϕp is Holp(g)-invariant. In most cases, this means that a variety of such calibrated
planes at p exists. The holonomy principle now provides us with a unique parallel k-form
ϕ ∈ Ωk(M) satisfying ϕ|p = ϕp. As ∇ϕ = 0, ϕ is closed. Moreover, since ϕ and g are
parallel, the condition ϕp|V ≤ volV at p implies ϕ|V ≤ volV for every oriented tangent
k-plane V at any point in M . This proves that ϕ ∈ Ωk(M) is a calibration. Additionally,
the invariance of ϕ under Hol(g) promises a large number of calibrated planes at any point
in M , which allows us to hope for calibrated submanifolds. (See [Joy07, Ch. 4.2] for more
details.) For manifolds (M, g) with multiple connected components Cα, we simply follow
this approach on each Cα and then piece together the resulting calibrations ϕα ∈ Ωk(Cα)
to one calibration ϕ ∈ Ωk(M) on M .

2.3. Main examples and equivalent criteria

In the following, we use the idea presented in the previous subsection to construct interesting
calibrations on manifolds of reduced holonomy, for which the existence of calibrated
submanifolds seems likely. We discuss the four main examples of calibrated geometries and
characterize the corresponding calibrated submanifolds. In preparation for the last two
examples, we additionally include a brief digression on the octonions and their relation to
the groups G2 and Spin(7).

2.3.1. Kähler manifolds and complex submanifolds

We start by introducing Kähler manifolds. To begin with, we give a rather hands-on
definition, before deriving an alternative characterization via holonomy.

Definition 2.9 (Kähler manifold I, [Joy07, Ch. 5.4]). Let (M,J) be a complex manifold
with Riemannian metric g. We call g Hermitian if it satisfies g(u, v) = g(Ju, Jv) for
all vector fields u, v ∈ Γ(TM). In that case, its associated 2-form ω is defined as
ω(u, v) = g(Ju, v), u, v ∈ Γ(TM). If dω = 0, we call g a Kähler metric, ω the Kähler
form and the quadruple (M, g, J, ω) a Kähler manifold.

Example 2.10 ([Lot22, Sec. 3.1], [Huy05, p. 42]). Consider Cn with the standard coordinates
zj = xj + iyj , j = 1, . . . , n, and the natural complex structure J̃ defined via

J̃

(
∂

∂xj

)
=

∂

∂yj
, J̃

(
∂

∂yj

)
= − ∂

∂xj
.
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The standard metric

g̃ =
n∑
j=1

(dxj ⊗ dxj + dyj ⊗ dyj) = Re
( n∑
j=1

dzj ⊗ dz̄j
)

on (Cn, J̃) is Hermitian as dxj ◦ J̃ = −dyj and dyj ◦ J̃ = dxj , j = 1, . . . , n. Furthermore,
its associated 2-form ω̃ is given by

ω̃ =
n∑
j=1

dxj ∧ dyj =
i

2

n∑
j=1

dzj ∧ dz̄j

and is clearly closed. As a result, (Cn, g̃, J̃ , ω̃) is a Kähler manifold.

Let (M,J) be a complex manifold of complex dimension n with Hermitian metric g,
associated 2-form ω (not necessarily closed) and Levi-Civita connection ∇. Using that g is
Hermitian and that ∇ is compatible with g, one shows that

(∇uω)(v, w) = g
(
(∇uJ)(v), w

)
= −g

(
(∇uJ)(w), v

)
and thus,

dω(u, v, w) = g
(
(∇uJ)(v), w

)
+ g
(
(∇vJ)(w), u

)
+ g
(
(∇wJ)(u), v

)
for u, v, w ∈ Γ(TM). On the other hand, the Koszul formula yields

2g
(
(∇uJ)(v), w

)
= dω(u, v, w)− dω(u, Jv, Jw)

[Bal06, Prop. 4.16]. From this, we deduce that dω = 0 ⇐⇒ ∇ω = 0 ⇐⇒ ∇J = 0. Now
suppose ω is closed. Then J |p = P ∗γ (J |p) = P−1γ ◦J |p◦Pγ and ω|p = P ∗γ (ω|p) = ω|p(Pγ ·, Pγ ·)
hold for any loop γ based at p ∈ M . In other words, J |p and ω|p are invariant under
Holp(g) (cf. Proposition 2.7). The first condition is equivalent to demanding that Pγ is
complex linear and therefore requires Holp(g) to lie in the group of unitary matrices U(n).
The second condition already follows from the first one and the fact that g is parallel:

ω|p(Pγu, Pγv) = g|p
(
J |p(Pγu), Pγv

)
= g|p

(
Pγ(J |pu), Pγv

)
= g|p(J |pu, v) = ω|p(u, v)

for u, v ∈ TpM . Thus, a Kähler manifold has holonomy in U(n).
Conversely, let us start with a Riemannian manifold (M, g) of dimension 2n with holonomy

Hol(g) ⊂ U(n) and fix a point p ∈M . This means that there exists a complex structure
Jp at p such that g|p is Hermitian and Holp(g) ⊂ U(n) with respect to Jp. Due to this, we
can identify TpM with Cn, which provides us with a Kähler form ωp corresponding to the
standard Kähler form ω̃ on Cn (see Example 2.10). Since every A ∈ Holp(g) ⊂ U(n) is
complex linear, we have AJpA

−1 = Jp and, consequently, also

ωp(Au,Av) = g|p
(
Jp(Au), Av

)
= g|p

(
A(Jpu), Av

)
= g|p(Jpu, v) = ωp(u, v)

for u, v ∈ TpM , where we used that g|p is Hermitian. Given that Jp and ωp are invariant
under Holp(g), extending them via parallel transport yields well-defined parallel tensors Jα
and ωα on the connected component Cα of M containing p (cf. Proposition 2.7). Carrying
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out this construction on every connected component and then piecing together the resulting
tensors leads to global parallel tensors J and ω. Since g, J and ω are parallel, their
compatibility and the condition J2 = −Id are maintained. Furthermore, ∇J = 0 shows
that J indeed gives a complex structure on M and ∇ω = 0 implies that dω = 0. Combining
all of this, we see that (M, g, J, ω) is a Kähler manifold according to Definition 2.9. This
leads to the following equivalent definition.

Definition 2.11 (Kähler manifold II, [Lot22, Def. 3.1]). A Kähler manifold is a Rie-
mannian manifold (M, g) of dimension 2n with Hol(g) ⊂ U(n).

Let (M2n, g) be a Kähler manifold. As discussed in the previous subsection, the above
characterization gives hope for finding interesting calibrations and, consequently, calibrated
submanifolds of M . At a point p ∈M , we consider the Kähler form ωp ∈ Λ2(T ∗pM) derived
from ω̃ on Cn, which, as we saw above, is invariant under U(n). Wirtinger’s inequality
[Lot22, Thm. 3.3] shows that for any orthonormal vectors e1, . . . , e2k ∈ Cn, we have

ω̃k

k!
(e1, . . . , e2k) ≤ 1

with equality if and only if the vectors e1, . . . , e2k span a complex k-plane in Cn, that is,
J̃(span{e1, . . . , e2k}) = span{e1, . . . , e2k}. Extending ωp parallelly to ω ∈ Ω2(M) not only
yields dω = 0 and therefore

d

(
ωk

k!

)
=
k dω ∧ ωk−1

k!
=
dω ∧ ωk−1

(k − 1)!
= 0,

but also preserves the condition ωk

k! |V ≤ volV for every oriented tangent 2k-plane V on M .
Thus, we obtain the following result.

Theorem 2.12 ([Lot22, Thm. 3.2]). A Kähler manifold (M, g, J, ω) possesses natural
calibrations given by ωk

k! , whose calibrated submanifolds are the complex k-dimensional
submanifolds, i.e., those submanifolds N ⊂M satisfying J(TpN) = TpN for every p ∈ N .

2.3.2. Calabi–Yau manifolds and special Lagrangian submanifolds

Let us move on to Calabi–Yau manifolds. As before, we give two equivalent definitions: one
based on the existence of a special differential form and the other in terms of holonomy.

Definition 2.13 (Calabi–Yau manifold I; [GJH03, Prop. 4.5], [Joy07, Def. 7.1.10]). A
Calabi–Yau manifold is a Ricci-flat Kähler manifold (M, g, J, ω) of complex dimension
n which admits a nowhere vanishing holomorphic (n, 0)-form Ω, called a holomorphic
volume form. We write (M, g, J, ω,Ω) for the given data.

Remark 2.14. There are several different definitions of Calabi–Yau manifolds in the literature.
While most of them require the manifold to be compact, we use a broader definition, which
allows us to equip the cotangent bundles T ∗Rn and T ∗Sn with Calabi–Yau structures (see
Subsection 3.2). Whenever the manifold is compact, the existence of a holomorphic volume
form already guarantees that there exists a Ricci-flat Kähler metric on (M,J) [Joy07,
Thm. 7.1.2].
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Example 2.15 ([Lot22, Sec. 3.2]). Let us revisit the Kähler manifold (Cn, g̃, J̃ , ω̃) from
Example 2.10. Its natural holomorphic volume form is given by

Ω̃ = dz1 ∧ · · · ∧ dzn.

As g̃ is (Ricci-)flat, this turns (Cn, g̃, J̃ , ω̃, Ω̃) into a Calabi–Yau manifold.

According to [GJH03, Prop. 4.5], a Calabi–Yau manifold has holonomy in the group
of special unitary matrices SU(n). Conversely, suppose that a Riemannian manifold
(M2n, g) has holonomy in SU(n). As SU(n) lies in U(n), this is simply a Kähler manifold
(M, g, J, ω) with Hol(g) ⊂ SU(n). By [GJH03, Prop. 4.5], g is a Ricci-flat. Now fix a point
p ∈M . Identifying TpM with Cn provides us with a nonzero (n, 0)-form Ωp corresponding
to the standard holomorphic volume form Ω̃ on Cn (see Example 2.15). Since every
A ∈ Holp(g) ⊂ SU(n) has determinant 1, we have A∗Ωp = (detA) Ωp = Ωp. Given that Ωp

is invariant under Holp(g), extending it via parallel transport yields a well-defined parallel
(n, 0)-form Ωα on the connected component Cα of M containing p (cf. Proposition 2.7).
Carrying out this construction on every connected component and then piecing together
the resulting forms leads to a global parallel (n, 0)-form Ω. Since Ω is parallel and Ωp

nonzero, Ω vanishes nowhere. Furthermore, Ω being parallel implies that it is closed, and
since Ω is an (n, 0)-form, this is equivalent to Ω being holomorphic [Huy05, Lemma 1.3.6].
Thus, we see that (M, g, J, ω,Ω) is a Calabi–Yau manifold according to Definition 2.13.
This leads to the following equivalent definition.

Definition 2.16 (Calabi–Yau manifold II, [Lot22, Def. 3.6]). A Calabi–Yau manifold
is a Riemannian manifold (M, g) of dimension 2n with Hol(g) ⊂ SU(n).

Let (M2n, g) be a Calabi–Yau manifold. At a point p ∈ M , we consider the nonzero
(n, 0)-form Ωp ∈ Λn,0(T ∗pM) derived from Ω̃ on Cn, which is invariant under SU(n). By
[Lot22, Thm. 3.8], we have

|Ω̃(e1, . . . , en)| ≤ 1

for any orthonormal vectors e1, . . . , en ∈ Cn with equality if and only if the vectors
span a Lagrangian plane in Cn, that is, ω̃|span{e1,...,en} = 0. In particular, we have
Ω̃(e1, . . . , en) = eiθ for some θ ∈ R whenever span{e1, . . . , en} is Lagrangian. This motivates
the following observation: For every θ ∈ R, we have

Re
(
e−iθΩ̃(e1, . . . , en)

)
≤ |Ω̃(e1, . . . , en)| ≤ 1

with equality if and only if span{e1, . . . , en} is Lagrangian and Im(e−iθΩ̃(e1, . . . , en)) = 0.
A plane span{e1, . . . , en} satisfying these two conditions is called special Lagrangian
with phase eiθ. Extending Ωp parallelly to Ω guarantees that dΩ = 0. Moreover, as g and ω
are parallel as well, the condition Re(e−iθΩ)|V ≤ volV is preserved and holds true for every
oriented tangent n-plane V on M with equality if and only if ω|V = 0 and Im(e−iθΩ)|V = 0.
Thus, we obtain the following result.
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Theorem 2.17 ([Lot22, Sec. 3.2]). On a Calabi–Yau manifold (M, g, J, ω,Ω), we have
natural calibrations given by Re(e−iθΩ) for θ ∈ R. An oriented real n-dimensional subman-
ifold N of M is calibrated by Re(e−iθΩ) if and only if it is special Lagrangian with phase
eiθ. That is,

ω|N = 0 (Lagrangian) and Im(e−iθΩ)|N = 0 (special Lagrangian). (2.2)

2.3.3. The octonions and the groups G2 and Spin(7)

Before moving on to the other two examples, let us have a look at the normed division
algebra of octonions O ∼= R8 and its purely imaginary subspace ImO ∼= R7. This recap
covers essential notions that we need for what follows. See [HL82, Sec. IV.1, IV.B], [SW17]
and [Kar20] for more details.

The octonions O equipped with octonionic multiplication and the standard inner product
〈u, v〉 = Re(uv̄) = Re(ūv) form a normed nonassociative alternative algebra. In other
words, it fulfills the weaker conditions u(uv) = u2v and (vu)u = vu2 for u, v ∈ O. All
octonions u, v, w ∈ O additionally satisfy uv = v̄ū,

〈uv,w〉 = 〈v, ūw〉 = 〈u,wv̄〉 and 〈uv, uw〉 = 〈vu,wu〉 = 〈v, w〉|u|2. (2.3)

Furthermore, we have the identities

u(v̄w) + v(ūw) = 2〈u, v〉w and (uv̄)w + (uw̄)v = 2〈v, w〉u, (2.4)

which in particular imply uv̄ + vū = 2〈u, v〉.
There exist three different kinds of alternating multilinear brackets on O:

- commutator: [u, v] = uv − vu,

- associator: [u, v, w] = (uv)w − u(vw),

- coassociator: 1
2 [u, v, w, y] = −〈v, wy〉u+ 〈w, yu〉v − 〈y, uv〉w + 〈u, vw〉y;

as well as three different kinds of cross products:

- two-fold: u× v = −1
2(ūv − v̄u) = −Im(ūv),

- three-fold: 2u× v × w = u(v̄w)− w(v̄u),

- four-fold: 4u× v × w × y = ū(v×w×y)− v̄(w×y×u)+w̄(y×u×v)− ȳ(u×v×w).

In particular, the last two simplify to u × v × w = u(v̄w) and u× v × w × y = ū(v(w̄y))
whenever u, v, w, y are orthogonal. Moreover, we make the following observations: First of
all, the three brackets and the two-fold cross product all restrict to maps on ImO, where
the latter simply gives the standard cross product on ImO. Second, the cross products
are indeed multilinear, alternating and satisfy |u× v| = |u ∧ v|, |u× v × w| = |u ∧ v ∧ w|
and |u× v ×w × y| = |u ∧ v ∧w ∧ y|. Additionally, the three- and four-fold cross products
are orthogonal to their arguments and the same holds true for the two-fold cross product
when restricted to ImO, which justifies the terminology.
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We now define the associative 3-form ϕ̃ ∈ Λ3(ImO)∗ ∼= Λ3(R7)∗ and the coassociative
4-form ψ̃ ∈ Λ4(ImO)∗ ∼= Λ4(R7)∗ on ImO ∼= R7 as

ϕ̃(u, v, w) =
1

2
〈[u, v], w〉 = 〈u× v, w〉 = 〈uv,w〉, (2.5)

ψ̃(u, v, w, y) = −1

2
〈[u, v, w], y〉 = 〈u, v × w × y〉, (2.6)

for u, v, w, y ∈ ImO ∼= R7. In fact, ψ̃ = ∗ϕ̃ ∈ Λ4(R7)∗ is the Hodge dual of ϕ̃ ∈ Λ3(R7)∗

with respect to the given inner product. Furthermore, this leads us to the Cayley 4-form
Φ̃ = 1∗ ∧ (ϕ̃ ◦ π1⊥) + (ψ̃ ◦ π1⊥) ∈ Λ4O∗ ∼= Λ4(R8)∗ on O ∼= R8, which can be written as

Φ̃(u, v, w, y) = 〈u, v × w × y〉 = −〈u× v × w, y〉 (2.7)

for u, v, w, y ∈ O ∼= R8, where π1⊥ : O→ ImO stands for the projection onto ImO = 1⊥.
By definition, Φ̃ is self-dual:

∗Φ̃ = ∗
(
1∗ ∧ (ϕ̃ ◦ π1⊥)

)
+ ∗(ψ̃ ◦ π1⊥) = (ψ̃ ◦ π1⊥) + 1∗ ∧ (ϕ̃ ◦ π1⊥) = Φ̃.

Example 2.18. Let e0, e1, . . . , e7 stand for the standard orthonormal basis of R8 with
dual basis e0, e1, . . . , e7. We identify these vectors with the standard basis of O given
by 1, i, j, k, e, ie, je, ke. Then it makes sense to view R7 ⊂ R8 as the space spanned by
e1, . . . , e7, which corresponds to ImO. By applying the octonion multiplication rules (see
Appendix C), we find that ϕ̃(u, v, w) = 〈uv,w〉, u, v, w ∈ R7, takes the form

ϕ̃ = e123 + e145 − e167 + e246 + e257 + e347 − e356, (2.8)

where e123 = e1 ∧ e2 ∧ e3 etc. On the other hand, we have

ψ̃(u, v, w, y) = 〈u, v × w × y〉 = 〈u, v(w̄y)〉 = −〈u, v(wy)〉

whenever u, v, w, y ∈ R7 are orthogonal, which yields

ψ̃ = e4567 + e2367 − e2345 + e1357 + e1346 + e1256 − e1247.

Note that ψ̃ is indeed the Hodge dual of ϕ̃. From the above formulas, we get

Φ̃ = e0 ∧ ϕ̃+ ψ̃ = e0123 + e0145 − e0167 + e0246 + e0257 + e0347 − e0356

+ e4567 + e2367 − e2345 + e1357 + e1346 + e1256 − e1247. (2.9)

We define the groups G2 ⊂ SO(7) and Spin(7) ⊂ SO(8) as the stabilizers of ϕ̃ and Φ̃,
respectively,

G2 = {A ∈ GL7(R) | A∗ϕ̃ = ϕ̃},

Spin(7) = {A ∈ GL8(R) | A∗Φ̃ = Φ̃},

which leads us to the topic of calibrated submanifolds in manifolds of exceptional holonomy.
(For more details on the classification of Riemannian holonomy groups, especially Berger’s
list [Ber55, Sec. 3, Thm. 3], see, for example, [Joy07, Ch. 3.4].)
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2.3.4. G2-manifolds and (co-)associative submanifolds

The first exceptional case refers to G2-manifolds. Using the above characterization of the
group G2, it is evident by the holonomy principle that the following two definitions are
equivalent.

Definition 2.19 (G2-manifold I, II; [Kar20, Def. 4.10], [Joy07, Def. 11.1.2], [Lot22,
Def. 4.3]). A G2-manifold is a 7-dimensional Riemannian manifold (M, g) equipped with
a parallel 3-form ϕ ∈ Ω3(M) which can be identified with ϕ̃ (2.5) at every point. Such a
form ϕ is called a parallel or torsion-free G2-structure on (M, g). We write (M, g, ϕ)
for the given data. Equivalently, a G2-manifold is a Riemannian manifold (M7, g) with
Hol(g) ⊂ G2.

Example 2.20. The model example of a G2-manifold is R7 equipped with the standard
metric and the 3-form ϕ ∈ Ω3(R7) defined by ϕ|p = ϕ̃ ∈ Λ3(T ∗pR7) = Λ3(R7)∗ (2.8).

In fact, there exists a (not necessarily parallel) G2-structure ϕ on (M, g) if and only
if we can identify the tangent spaces TpM, p ∈ M, with the purely imaginary octonions
ImO in a smoothly varying way. This follows from the fact that ϕ uniquely determines
the metric g and the orientation volM via the relation

(uyϕ) ∧ (vyϕ) ∧ ϕ = −6 g(u, v) volM , u, v ∈ TpM, p ∈M7

where y stands for the interior product (see [Kar05, Sec. 2.3], although we differ by a sign
here due to the opposite choice of orientation). Given this data, we naturally obtain a
two-fold cross product on TpM via (u× v)[ = vyuyϕ. This further leads to a product on
the space R⊕ TpM , defined by

(u1 + u)(v1 + v) = u1v1 − g(u, v) + u1v + v1u+ u× v (2.10)

for u1 + u, v1 + v ∈ R⊕ TpM (cf. [SW17, Thm. 5.4]). As in Subsubsection 2.3.3, we find
three multilinear alternating brackets on TpM , including the associator [·, ·, ·] and the
coassociator [·, ·, ·, ·]. These observations demonstrate that the existence of such a ϕ goes
hand in hand with smoothly varying structures on the tangent spaces, that mirror those
on the purely imaginary octonions.

Given a G2-manifold (M, g, ϕ), we notice that the Hodge dual ψ = ∗ϕ ∈ Ω4(M) of ϕ
is also parallel and can be identified with ψ̃ (2.6) at every point. As both ϕ and ψ are
G2-invariant, the following result is not surprising.

Theorem 2.21 ([HL82, Thm. 1.4, 1.16]). Let (M, g, ϕ) be a G2-manifold. Then ϕ ∈ Ω3(M)
and ψ = ∗ϕ ∈ Ω4(M) are calibrations.

Proof. As ϕ and ψ are parallel, they are in particular closed. Let e1, e2, e3 ∈ TpM be
orthonormal tangent vectors to M . Then ϕ satisfies

ϕ(e1, e2, e3) = g(e1 × e2, e3) ≤ |e1 × e2||e3| = |e1 ∧ e2||e3| = 1 (2.11)

by the Cauchy–Schwarz inequality. Therefore, ϕ is a calibration, and by Lemma 2.4, so is
ψ = ∗ϕ.
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We call the corresponding calibrated submanifolds associative 3-folds and coassocia-
tive 4-folds, respectively. There are different characterizations of such submanifolds and
some of them are captured in the following two propositions.

Proposition 2.22 (Associative submanifolds; [HL82, Sec. IV.1], [KM05, Prop. 2.3]). Let
(M7, g, ϕ) be a G2-manifold with ψ = ∗ϕ and E3 ⊂M7 be an oriented submanifold. Then
the following are equivalent (up to a change of orientation):

(i) The submanifold E3 is associative in M7, that is, ϕ|E = volE.

(ii) The tangent space TE ⊂ TM of E is preserved by the two-fold cross product.

(iii) The associator [·, ·, ·] vanishes on E.

(iv) At every point p ∈ E, we have uyvywyψ = 0 for some basis {u, v, w} of TpE.

Proof. We start by proving the equivalence (i) ⇔ (ii). Let p ∈ E. By (2.11), the oriented
tangent 3-plane TpE spanned by orthonormal tangent vectors e1, e2, e3 ∈ TpM is calibrated
by ϕ if and only if we have ei × ej = ek for all even permutations (i, j, k) of (1, 2, 3). Due
to the multilinearity and the alternating property of cross products, this condition implies
that the two-fold cross product of any two vectors in TpE lies again in TpE. Conversely,
suppose that the two-fold cross product preserves TpE. As ei × ej , i 6= j, has unit length
and is orthogonal to both ei and ej , we must have ei × ej = εijkek, εijk ∈ {±1}, for all
permutations (i, j, k) of (1, 2, 3). Since ϕ is alternating, so is the sign εijk. Thus, we can
equip TpE with an orientation such that εijk = +1 for all even permutations. Since the
two-fold cross product varies smoothly on M , we can pick a global orientation satisfying
this condition. As a result, E becomes associative in M7.

Before proving (i) ⇔ (iii), let us derive a general identity, which relates the associative
3-form to the associator. Let p ∈ M and u, v, w ∈ TpM be orthogonal tangent vectors.
Then

ϕ(u, v, w) = ϕ(v, w, u) = g(vw, u) = Re
(
ū(vw)

)
= −Re

(
u(vw)

)
= Re

(
u(v̄w)

)
= Re(u× v × w).

On the other hand, we have

Im(u× v × w) = Im
(
u(v̄w)

)
= −Im

(
u(vw)

)
= −1

2

(
u(vw)− u(vw)

)
= −1

2

(
u(vw)− (w̄v̄)ū

)
= −1

2

(
u(vw) + (wv)u

)
= −1

2

(
u(vw)− (uv)w

)
=

1

2
[u, v, w].

Above, we used the identity (uv)w = −(vu)w = (vw)u = −(wv)u, obtained by applying
(2.4) multiple times. As the three-fold cross product, ϕ and the associator are all alternating,
the resulting identities

Re(u× v × w) = ϕ(u, v, w) and Im(u× v × w) =
1

2
[u, v, w]
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even hold true for general u, v, w ∈ TpM . Using that |u× v × w| = |u ∧ v ∧ w|, we get

ϕ(u, v, w)2 +
1

4

∣∣[u, v, w]
∣∣2 = |u ∧ v ∧ w|2. (2.12)

Now let p ∈ E and e1, e2, e3 be an oriented orthonormal basis for TpE. As |e1∧e2∧e3| = 1,
(2.12) implies that ϕ(e1, e2, e3) = ±1 is equivalent to [e1, e2, e3] = 0. After changing the
orientation if necessary, this shows that TpE is calibrated by ϕ if and only if the associator
vanishes on TpE. As ϕ varies smoothly on M , there exists a global orientation that satisfies
this, which proves (i) ⇔ (iii) (up to a change of orientation).

Lastly, we prove (iii)⇔ (iv). Let p ∈ E and u, v, w ∈ TpM be a basis for TpE. By (2.10),
we have

[u, v, w] = (uv)w − u(vw)

=
(
−g(u, v) + u× v

)
w − u

(
−g(v, w) + v × w

)
= −g(u, v)w + g(v, w)u+ (u× v)w − u(v × w)

= −g(u, v)w + g(v, w)u− g(u× v, w) + g(u, v × w) + (u× v)× w − u× (v × w)

= −g(u, v)w + g(v, w)u− ϕ(u, v, w) + ϕ(v, w, u) + (u× v)× w − u× (v × w)

= −g(u, v)w + g(v, w)u+ (u× v)× w − u× (v × w),

where we used that ϕ is alternating. From [Kar05, Lemma 2.4.3], we know

u× (v × w) = −g(u, v)w + g(u,w)v − (uyvywyψ)].

From this, we also get

−(u× v)× w = w × (u× v) = −g(u,w)v + g(v, w)u− (uyvywyψ)].

Combining all of this yields

[u, v, w] = 2(uyvywyψ)].

As a result, TpE is calibrated by ϕ if and only if we have uyvywyψ = 0. As p ∈ E was
arbitrary, this completes the proof.

Proposition 2.23 (Coassociative submanifolds, [HL82, Sec. IV.1]). Let (M7, g, ϕ) be a
G2-manifold with ψ = ∗ϕ and F 4 ⊂M7 be an oriented submanifold. Then the following
are equivalent (up to a change of orientation):

(i) The submanifold F 4 is coassociative in M7, that is, ψ|F = volF .

(ii) The two-fold cross product u× v is orthogonal to TpF for all u, v ∈ TpF, p ∈ F .

(iii) The coassociator [·, ·, ·, ·] vanishes on F .

(iv) ϕ|F = 0.
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Proof. Let us first derive a general identity, which relates the coassociative 4-form ψ to the
coassociator and is key in the proof of (i) ⇔ (iii). Subsequently, we prove the equivalences
(iii) ⇔ (iv) and (iv) ⇔ (ii). Let p ∈M and u, v, w, y ∈ TpM be orthogonal tangent vectors.
Then

ψ(u, v, w, y) = g(u, v × w × y) = g
(
u, v(w̄y)

)
= Re

(
ū(v(w̄y))

)
= Re(u× v × w × y).

On the other hand, we have

g
(
Im(u× v × w × y), u

)
= g(u× v × w × y, u) = g

(
ū(v(w̄y)), u

)
= −g

(
u(v̄(wy)), u

)
= −g

(
v̄(wy), 1

)
|u|2 = −g(wy, v)|u|2

=
1

2
g
(
[u, v, w, y], u

)
,

where we used (2.3) in the second line. As the four-fold cross product and the coassociator
are alternating, this proves that the components of Im(u× v × w × y) and 1

2 [u, v, w, y] in
the directions of u, v, w and y are equal. In other words, the two terms differ at most by a
tangent vector orthogonal to u, v, w and y. That is, Im(u× v × w × y) = 1

2 [u, v, w, y] + a
for some a ∈ span{u, v, w, y}⊥ ⊂ TpM . We will show that a = 0. By definition, [u, v, w, y]
lies in span{u, v, w, y} and is therefore orthogonal to a. Hence, we get

g
(
Im(u× v × w × y), a

)
=

1

2
g
(
[u, v, w, y], a

)
+ |a|2 = |a|2.

In other words, a is equal to zero if and only if g(Im(u× v × w × y), a) = 0. We have

g
(
Im(u× v × w × y), a

)
= g
(
ū(v(w̄y)), a

)
= g
(
u(v(wy)), a

)
.

Applying (2.4) six times gives g(u(v(wy)), a) = g(y(w(vu)), a). On the other hand, we
obtain

g
(
u(v(wy)), a

)
= g
(
ā(u(v(wy))), 1

)
= −g

(
a(u(v(wy))), 1

)
= −g

(
u(v(w(ya))), 1

)
= −g

(
a, ȳ(w̄(v̄ū))

)
= −g

(
a, y(w(vu))

)
by using (2.3) and (2.4) multiple times. We deduce that g(Im(u × v × w × y), a) =
g(y(w(vu)), a) = −g(a, y(w(vu))), which proves that Im(u× v × w × y) is orthogonal to
a and therefore that a = 0. As the four-fold cross product, ψ and the coassociator are
alternating, the resulting identities

Re(u× v × w × y) = ψ(u, v, w, y) and Im(u× v × w × y) =
1

2
[u, v, w, y]

even hold true for general u, v, w, y ∈ TpM . Using that |u× v × w × y| = |u ∧ v ∧ w ∧ y|,
we get

ψ(u, v, w, y)2 +
1

4

∣∣[u, v, w, y]
∣∣2 = |u ∧ v ∧ w ∧ y|2. (2.13)

Now let p ∈ F and e1, . . . , e4 be an oriented orthonormal basis for TpF . Given
that |e1 ∧ e2 ∧ e3 ∧ e4| = 1, (2.13) implies that ψ(e1, e2, e3, e4) = ±1 is equivalent to
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[e1, e2, e3, e4] = 0. After changing the orientation if necessary, this proves that TpF
is calibrated by ψ if and only if the coassociator vanishes on TpF . As ψ varies smoothly on
M , there exists a global orientation that satisfies this, which proves (i) ⇔ (iii) (up to a
change of orientation).

Let us proceed to the proof of (iii) ⇔ (iv). By definition, we have

1

2
[u, v, w, y] = −ϕ(v, w, y)u+ ϕ(w, y, u)v − ϕ(y, u, v)w + ϕ(u, v, w)y (2.14)

for all u, v, w, y ∈ TpM, p ∈ M . Now let p ∈ F and u, v, w, y be a basis for TpF . As
the coassociator is alternating, it vanishes on TpF if and only if [u, v, w, y] = 0, which is
equivalent to ϕ(v, w, y) = ϕ(w, y, u) = ϕ(y, u, v) = ϕ(u, v, w) = 0 by (2.14). Since ϕ is
alternating too, this condition is equivalent to ϕ|TpF = 0. As p ∈ F was arbitrary, this
proves (iii) ⇔ (iv).

Lastly, the equivalence (iv) ⇔ (ii) follows directly from the definition ϕ(u, v, w) =
g(u× v, w) for u, v, w ∈ TpM, p ∈M .

2.3.5. Spin(7)-manifolds and Cayley submanifolds

The second class of manifolds with exceptional holonomy comprises Spin(7)-manifolds. As
in the G2 case, the equivalence of the following two definitions is a direct consequence of
the characterization of the group Spin(7) along with the holonomy principle.

Definition 2.24 (Spin(7)-manifold I, II; [Joy07, Def. 11.4.2], [Lot22, Def. 4.14]). A
Spin(7)-manifold is an 8-dimensional Riemannian manifold (M, g) equipped with a parallel
4-form Φ ∈ Ω4(M) which can be identified with Φ̃ (2.7) at every point. Such a form Φ is
called a parallel or torsion-free Spin(7)-structure on (M, g). We write (M, g,Φ) for
the given data. Equivalently, a Spin(7)-manifold is a Riemannian manifold (M8, g) with
Hol(g) ⊂ Spin(7).

Example 2.25. The model example of a Spin(7)-manifold is R8 equipped with the standard
metric and the 4-form Φ ∈ Ω4(R8) defined by Φ|p = Φ̃ ∈ Λ4(T ∗pR8) = Λ4(R8)∗ (2.9).

Similarly to the G2 case, there exists a (not necessarily parallel) Spin(7)-structure Φ on
(M, g) if and only if we can identify the tangent spaces TpM, p ∈M, with the octonions O
in a smoothly varying way. This is due to the fact that Φ uniquely determines the metric
g and the orientation volM via the relation

(uyv1yΦ) ∧ (uyv2yΦ) ∧ Φ = −6
(
g(u, u)g(v1, v2)− g(u, v1)g(u, v2)

)
volM (2.15)

for u, v1, v2 ∈ TpM, p ∈M8 (see [Kar05, Sec. 4.3], although the presented formula differs
by a sign). Given this data, we naturally obtain a three-fold cross product X on TpM via

X(u, v, w)[ = (−u× v × w)[ = wyvyuyΦ, (2.16)

where we introduce a sign to match the convention used in [KM05]. This further leads to a
product on TpM defined by

uv = −X(u, e0, v) + g(u, e0)v + g(v, e0)u− g(u, v)e0 (2.17)
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for some fixed unit vector e0 ∈ TpM (cf. [SW17, Thm. 5.20]). (This is simply a gener-
alization of the product defined in (2.10), where e0 = 1 ∈ R ⊂ R ⊕ TpM7.) Following
Subsubsection 2.3.3, we find three alternating multilinear brackets and two additional
kinds of cross products on TpM , including a four-fold cross product · × · × · × ·. These
observations demonstrate that the existence of such a Φ goes hand in hand with smoothly
varying structures on the tangent spaces, that mirror those on the octonions. As a result,
we also obtain a natural splitting of the tangent vectors into real and imaginary parts.

As a parallel Spin(7)-structure Φ is in particular Spin(7)-invariant, the following result
is what we would expect.

Theorem 2.26 ([HL82, Thm. 1.24]). Let (M, g,Φ) be a Spin(7)-manifold. Then Φ ∈ Ω4(M)
is a calibration.

Proof. As Φ is parallel, it is in particular closed. Let e1, . . . , e4 ∈ TpM be orthonormal
tangent vectors to M . Then Φ satisfies

Φ(e1, e2, e3, e4) = g
(
X(e1, e2, e3), e4

)
≤ |X(e1, e2, e3)||e4| = |e1 ∧ e2 ∧ e3||e4| = 1 (2.18)

by the Cauchy–Schwarz inequality. Therefore, Φ is a calibration.

We refer to the corresponding calibrated submanifolds as Cayley 4-folds. The following
proposition captures some equivalent characterizations of them.

Proposition 2.27 (Cayley submanifolds; [HL82, Sec. IV.1], [KM05, Prop. 2.5]). Let
(M8, g,Φ) be a Spin(7)-manifold and F 4 ⊂ M8 be an oriented submanifold. Then the
following are equivalent (up to a change of orientation):

(i) The submanifold F 4 is Cayley in M8, that is, Φ|F = volF .

(ii) The tangent space TF ⊂ TM of F is preserved by the three-fold cross product X.

(iii) At every point p ∈ F , we have Im(u× v × w × y) = 0 for some basis {u, v, w, y} of
TpF .

(iv) At every point p ∈ F , the rank 7 bundle valued 4-form η on M defined by

η(u, v, w, y) = u[ ∧X(v, w, y)[ + v[ ∧X(w, u, y)[ + w[ ∧X(u, v, y)[ + y[ ∧X(v, u, w)[

+ uyX(v, w, y)yΦ + vyX(w, u, y)yΦ + wyX(u, v, y)yΦ + yyX(v, u, w)yΦ

vanishes for some basis {u, v, w, y} of TpF .

Proof. We start by proving the equivalence (i) ⇔ (ii). Let p ∈ F . By (2.18), the oriented
tangent 4-plane TpF spanned by orthonormal tangent vectors e1, . . . , e4 ∈ TpM is calibrated
by Φ if and only if we have X(ei, ej , ek) = el for all even permutations (i, j, k, l) of (1, 2, 3, 4).
Due to the multilinearity and the alternating property of cross products, this condition
implies that the three-fold cross product of any three vectors in TpF lies again in TpF .
Conversely, suppose that the three-fold cross product preserves TpF . As X(ei, ej , ek) has
unit length and is orthogonal to ei, ej and ek whenever i, j, k are distinct, we must have
X(ei, ej , ek) = εijklel, εijkl ∈ {±1}, for all permutations (i, j, k, l) of (1, 2, 3, 4). Since Φ is
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alternating, so is the sign εijkl. Thus, we can equip TpF with an orientation such that
εijkl = +1 for all even permutations. Since the three-fold cross product varies smoothly
on M , we can pick a global orientation satisfying this condition. As a result, F becomes
Cayley in M8.

We move on to the proof of (i) ⇔ (iii). Let p ∈M and u, v, w, y ∈ TpM be orthogonal
tangent vectors. Similarly to the coassociative case, we compute

Φ(u, v, w, y) = g(u, v × w × y) = g
(
u, v(w̄y)

)
= Re

(
ū(v(w̄y))

)
= Re(u× v × w × y).

As the four-fold cross product and Φ are both alternating, the identity Φ(u, v, w, y) =
Re(u×v×w×y) even holds true for general u, v, w, y ∈ TpM . Using that |u×v×w×y| =
|u ∧ v ∧ w ∧ y|, we get

Φ(u, v, w, y)2 + |Im(u× v × w × y)|2 = |u ∧ v ∧ w ∧ y|2 (2.19)

for all u, v, w, y ∈ TpM, p ∈M . Now let p ∈ F and e1, . . . , e4 be an oriented orthonormal
basis for TpF . As |e1 ∧ e2 ∧ e3 ∧ e4| = 1, (2.19) implies that Φ(e1, e2, e3, e4) = ±1 is
equivalent to Im(e1 × e2 × e3 × e4) = 0. After changing the orientation if necessary, this
shows that TpF is calibrated by Φ if and only if the purely imaginary four-fold cross product
vanishes on TpF . As Φ varies smoothly on M , there exists a global orientation that satisfies
this, which proves (i) ⇔ (iii) (up to a change of orientation).

Lastly, we prove (iii) ⇔ (iv). Let e0, . . . , e7 be an orthonormal basis for TpM, p ∈ M ,
where e0 represents the multiplicative identity spanning Re(TpM). Define a 4-form η̃ with
values in TM by

η̃(u, v, w, y) = −4 Im(u× v × w × y)

= Im
(
ūX(v, w, y)− v̄X(w, y, u) + w̄X(y, u, v)− ȳX(u, v, w)

)
= Im

(
ūX(v, w, y) + v̄X(w, u, y) + w̄X(u, v, y) + ȳX(v, u, w)

)
for u, v, w, y ∈ TpM, p ∈M . By (2.17), we have

Im(ūv) = Im
(
−X(ū, e0, v) + g(ū, e0)v + g(v, e0)ū− g(ū, v)e0

)
= X(u, e0, v) + g(u, e0) Im(v)− g(v, e0) Im(u)

=
7∑

k=1

(
g
(
X(u, e0, v), ek

)
+ g(u, e0)g(v, ek)− g(v, e0)g(u, ek)

)
ek

=
7∑

k=1

(
Φ(v, u, e0, ek) + u[(e0)v

[(ek)− v[(e0)u[(ek)
)
ek

=

7∑
k=1

(
(uyvyΦ + u[ ∧ v[)(e0, ek)

)
ek,

where we used that the three-fold cross product is orthogonal to its arguments and
alternating to obtain

Im
(
X(ū, e0, v)

)
= X(ū, e0, v) = X

(
Im(ū), e0, v

)
= −X

(
Im(u), e0, v

)
= −X(u, e0, v).
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This allows us to write η̃ as

η̃(u, v, w, y) =
7∑

k=1

(
η(u, v, w, y)(e0, ek)

)
ek (2.20)

with

η(u, v, w, y) = u[ ∧X(v, w, y)[ + v[ ∧X(w, u, y)[ + w[ ∧X(u, v, y)[ + y[ ∧X(v, u, w)[

+ uyX(v, w, y)yΦ + vyX(w, u, y)yΦ + wyX(u, v, y)yΦ + yyX(v, u, w)yΦ.

The latter is a 4-form on M with values in Λ2(T ∗M). More precisely, it only takes values in a
rank 7 subbundle and we will now outline how to see this. The bundle Λ2(T ∗M) = Λ2

7⊕Λ2
21

of rank 28 splits into the subbundles

Λ2
7 =

{
α ∈ Λ2(T ∗M)

∣∣ ∗ (Φ ∧ α) = −3α
}

and Λ2
21 =

{
α ∈ Λ2(T ∗M)

∣∣ ∗ (Φ ∧ α) = α
}

of rank 7 and 21, respectively (see [Kar05, Sec. 4.2], although the descriptions vary by a
sign due to the opposite choice of orientation). Let u, v ∈ TpM, p ∈ M . Using [Kar05,
Lemma A.1] along with the fact that Φ is self-dual, we compute

uyvyΦ = ∗
(
u[ ∧ ∗(vyΦ)

)
= − ∗ (u[ ∧ v[ ∧ ∗Φ) = − ∗ (Φ ∧ u[ ∧ v[). (2.21)

On the other hand, we have

∗
(
Φ ∧ (uyvyΦ)

)
= −3u[ ∧ v[ − 2uyvyΦ. (2.22)

To see this, we use the local form of Φ (2.9) to compute |Φ ∧ (eiyejyΦ)|2 = 21 for i 6= j.
Furthermore, (2.15) and (2.21) imply

Φ ∧ (eiyejyΦ) ∧ (eiyejyΦ) = −6 |ei ∧ ej |2 volM = −6 volM ,

Φ ∧ (eiyejyΦ) ∧ ei ∧ ej = −|eiyejyΦ|2 volM = −3 volM .

By multilinearity, we obtain (2.22). Combining this with (2.21), we get

∗
(
Φ ∧ (u[ ∧ v[ + uyvyΦ)

)
= −3(u[ ∧ v[ + uyvyΦ),

which proves that η only takes values in the rank 7 bundle Λ2
7.

Now let f1, . . . , f4 be an orthogonal basis for TpF at p ∈ F . Whenever η(f1, f2, f3, f4) = 0,
we also have η̃(f1, f2, f3, f4) = 0 by (2.20). Conversely, the equivalence (iii) ⇔ (ii) implies
that η̃(f1, f2, f3, f4) vanishes if and only if the three-fold cross product X of any three basis
vectors lies in the span of the fourth one. As the wedge product on 1-forms and Φ are
alternating, this forces every term in η(f1, f2, f3, f4) to vanish. As a result, the condition
η(f1, f2, f3, f4) = 0 is equivalent to η̃(f1, f2, f3, f4) = 0. Since both η and η̃ are multilinear,
this also holds true for general bases u, v, w, y of TpF , which completes the proof of (iii) ⇔
(iv).
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2.4. Classification of calibrations

Having discussed the four main examples of calibrated geometries, the question arises why
these particular cases are of special importance and whether there are other noteworthy
examples that we have not mentioned yet. In other words, we would like to classify
calibrations. As we saw above, for every parallel calibration ϕ on Euclidean space (Rn, g)
which is invariant under some group G ⊂ O(n), there exists a corresponding parallel
calibration on any Riemannian n-manifold with holonomy in G. Therefore, classifying
calibrations with constant coefficients on Rn also leads to a classification of parallel
calibrations on manifolds of special holonomy. Fortunately, there have been significant
efforts to classify constant calibrations on Rn, and the most important results are compiled,
for example, in [Joy07, Ch. 4.3]. Here, we provide a brief overview.

Let ϕ ∈ Λk(Rn)∗ be a k-calibration and denote the Grassmannian of oriented k-planes in
Rn by Gr+(k,Rn). Then every V ∈ Gr+(k,Rn) satisfies ϕ|V ≤ volV , with equality whenever
V is calibrated by ϕ. We denote the subset of calibrated planes by Fϕ ⊂ Gr+(k,Rn) and
call it a face of Gr+(k,Rn). Moreover, we consider two k-calibrations ϕ,ψ ∈ Λk(Rn)∗

equivalent whenever they are conjugate under O(n) or satisfy Fϕ = Fψ. Hence, our goal
is to determine all possible nonempty faces Fϕ arising from calibrations ϕ ∈ Λk(Rn)∗,
up to the action of O(n) on Gr+(k,Rn). To this end, it is important to note that the
Hodge star operator satisfies ∗Gr+(k,Rn) = Gr+(n−k,Rn), and ∗Fϕ = F∗ϕ by Lemma 2.4.
Consequently, a classification of the faces of Gr+(k,Rn) also yields a classification of the
faces of Gr+(n− k,Rn).

To begin with, the case k = 1 is trivial because Gr+(1,Rn) can be naturally identified
with the unit sphere Sn−1 ⊂ Rn, where nonempty faces are simply single points. Harvey
and Lawson [HL82, Thm. II.7.16] then classified the case k = 2. Combining this with our
observations above, Joyce [Joy07, Thm. 4.3.2] provides a complete description of calibrations
of degree 1, 2, n − 2 and n − 1, which, in particular, classifies all calibrations on Rn for
n ≤ 5. Additionally, Dadok and Harvey [DH83] and Morgan [Mor85, Sec. 4] examined the
case (n, k) = (6, 3), and Harvey and Morgan [HM86, Thm. 6.2] the case (n, k) = (7, 3).
Thanks to their efforts, all constant calibrations on Rn for n ≤ 7 are classified. Based
on these results, Joyce [Joy07, Ch. 4.3] drew the following insightful conclusion: For all
constant calibrations ϕ on Rn with dimFϕ > 0 for n ≤ 6 and dimFϕ > 3 for n = 7, the
submanifolds calibrated by ϕ are derived from one of the following: (1) complex curves in
C2 or C3, (2) complex surfaces in C3, (3) special Lagrangian 3-folds in C3, (4) associative
3-folds in R7, or (5) coassociative 4-folds in R7. In other words, there are no additional
interesting calibrated geometries in dimension n ≤ 7 that we have missed.

For any n ≥ 8, no complete classification of faces of Gr+(k,Rn) exists. Nevertheless, there
are some interesting examples in Λ4

+(R8)∗, such as Cayley 4-folds, special Lagrangian 4-folds,
complex surfaces, complex Lagrangian surfaces and affine quaternionic lines [DHM88],
[Joy07, Ch. 4.3]. In fact, these are all examples of Cayley 4-folds. Even associative 3-folds
and coassociative 4-folds can be regarded as special cases: For A3 associative and C4

coassociative in R7, both R × A3 and {c} × C4 for c ∈ R are Cayley in R8 = R × R7.
Conversely, consider a Cayley 4-fold L4 in R8 = span{1} × R7. If π1⊥L

4 = L4, then L4 is
coassociative in R7. Otherwise, L4 can be written as R×A3 for some associative 3-fold A3

in R7. This follows from the close relationship between the standard (co-)associative and
Cayley forms, characterized by Φ̃ = 1∗ ∧ (ϕ̃ ◦ π1⊥) + (ψ̃ ◦ π1⊥) on R8.
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In summary, special Lagrangian submanifolds, (co-)associative submanifolds and Cayley
4-folds are indeed particularly important for n ≤ 8. For n ≤ 7, they even stand out as the
most interesting examples. Therefore, following the lead of [IKM05; KL12; KM05], we
focus exclusively on these four kinds of calibrated geometries hereafter.
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3. Review of previous constructions

In this section, we establish our setup and notation, while outlining the constructions of
calibrated submanifolds by Ionel–Karigiannis–Min-Oo [IKM05], Karigiannis–Leung [KL12]
and Karigiannis–Min-Oo [KM05].

3.1. The second fundamental form

Let (Xn, g = 〈·, ·〉) be a real n-dimensional Riemannian manifold with local coordinates
x = (x1, . . . , xn). We consider some oriented immersed submanifold Lq with local coordi-
nates u = (u1, . . . , uq) and immersion Lq ⊂ Xn given by xi = xi(u), i = 1, . . . , n. We write
( )T and ( )N for the orthogonal projections to the tangent bundle TL and normal bundle
NL of L ⊂ X, respectively. Throughout this thesis, ∇ always denotes the Levi-Civita
connection on the tangent bundle TX of the ambient manifold Xn, unless stated otherwise.
Let us now fix a point u∗ ∈ L and let x∗ = x(u∗) ∈ X. By parallel transporting orthonormal
bases of Tx∗L and Nx∗L via the induced connections on TL and NL, respectively, we
obtain a local orthonormal frame e1, . . . , eq, νq+1, . . . , νn for TX that satisfies

(∇eiej)|Tx∗ = 0 and (∇eiνj)|Nx∗ = 0 (3.1)

[IKM05, Sec. 2]. We refer to a frame fulfilling (3.1) as normal coordinates and always
work with them unless we say otherwise.

Let the second fundamental form A of the immersion Lq ⊂ Xn be defined as the
bilinear operator

A : Γ(NL)× Γ(TL)→ Γ(TL), (ν, w) 7→ Aν(w) = (∇wν)T .

It is easy to check that for any normal vector field ν, Aν is a symmetric linear operator
and, hence, diagonalizable [IKM05, Sec. 2]. We use the following abbreviations:

Aνij = 〈Aν(ei), ej〉 = Aνji and Akij = Aνkij .

Remark 3.1. There are different ways to define the second fundamental form. Above,
we stated the definition used in [HL82] and [IKM05], which relates to the more common
definition

A : Γ(TL)× Γ(TL)→ Γ(NL), (v, w) 7→ A(v, w) = (∇wv)N

(see, e.g., [Wen22, Def. 28.2]) via

〈A(v, w), ν〉 = 〈(∇wv)N , ν〉 = 〈∇wv, ν〉 = −〈v,∇wν〉 = −〈v, (∇wν)T 〉
= −〈v,Aν(w)〉

for every ν ∈ Γ(NL). Here we used that v is tangential, ν is normal, and that ∇ is the Levi-
Civita connection. In fact, −Aν is called the Weingarten map associated to ν [Wen22,
Sec. 28.1] and uniquely determines A. Nevertheless, we stick to the sign conventions and
terms used in [IKM05] and continue to refer to Aν as the second fundamental form in the
direction of ν, as the sign does not affect the results.
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Remark 3.2. One can show that L is minimal if and only if its mean curvature vector H,
defined by H = TrA, vanishes [Lot22, Def. 2.3]. This is equivalent to demanding TrAk = 0
for all k = q + 1, . . . , n in our notation.

Finally, using normal coordinates (3.1) and the second fundamental form A, we obtain
the identities

∇eiej = −
n∑

k=q+1

Akijν
k and ∇eiνj =

q∑
l=1

Ajile
l (3.2)

at x∗, where e1, . . . , eq and νq+1, . . . , νn are the dual coframes [IKM05, (2.3)].

3.2. Special Lagrangians in T ∗Rn and T ∗Sn

We begin by examining special Lagrangians in the cotangent space T ∗X for Xn being
either Euclidean space Rn or the n-dimensional sphere Sn. All theorems presented in this
subsection were directly proved by verifying the two conditions in (2.2).

Before reviewing the constructions, we need to recall the definition of the elementary
symmetric polynomials and introduce austere submanifolds. Consider a matrix B ∈ Rq×q
and let I ∈ Rq×q denote the identity matrix. The elementary symmetric polynomials
σj(B) of B are defined by

det(I + tB) =

q∑
j=0

tjσj(B)

or, more explicitly, as

σj(B) =
∑

1≤i1<···<ij≤n
λi1 · · ·λij

for λ1, . . . , λq ∈ C representing the eigenvalues of B (cf. [KL12, (2.4)], [Bos13, Ch. 4.4]). In
particular, we have σ0(B) = 1, σ1(B) = TrB and σq(B) = detB. An oriented immersed
submanifold Lq ⊂ Xn is called austere if all odd degree elementary symmetric polynomials
of the second fundamental form Aν of Lq ⊂ Xn vanish for all ν ∈ Γ(NL) [HL82, Def. 3.15].
That is, σ2j−1(A

ν) = 0 for all j = 1, . . . , dq/2e and ν ∈ Γ(NL). By Remark 3.2, this
condition is equivalent to Lq being minimal for q = 1, 2, but much stronger for q ≥ 3.

Laying the foundation for many subsequent works, Harvey and Lawson utilized bundles
to construct a versatile example of special Lagrangians. More explicitly, they viewed the
total space of the cotangent bundle T ∗Rn as Cn and equipped it with the canonical Kähler
form ω̃ and the standard (n, 0)-volume form Ω̃. This led them to the following result for
any oriented immersed submanifold Lq ⊂ Rn.

Theorem 3.3 ([HL82, Thm. III.3.11]). The conormal bundle N∗L is special Lagrangian
in T ∗Rn with phase eiθ = ±in−q if and only if Lq is austere in Rn.

This construction was later generalized by “twisting” N∗L by a special section µ ∈ Ω1(L).
More precisely, we define the space

Xµ =
{

(x, ξ + µx) ∈ T ∗Rn|L
∣∣x ∈ L, ξ ∈ N∗xL},
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which we sometimes mnemonically refer to it as “N∗L + µ”. This is a “twisting” of
the conormal bundle N∗L over L obtained by affinely translating each fiber N∗xL by a
cotangent vector µx ∈ T ∗xL. As Xµ is a smooth n-dimensional submanifold of T ∗Rn ∼= Cn,
it is natural to wonder whether it is special Lagrangian. This question was first investigated
by Borisenko [Bor93] for exact 1-forms µ = dρ, ρ ∈ C∞(L), in the cases (q, n) = (2, 3) and
(3, 4). Later, Karigiannis and Leung considered general q, n and µ. They obtained the
following results.

Lemma 3.4 ([KL12, Prop. 1]). The submanifold N∗L+ µ is Lagrangian in T ∗Rn if and
only if dµ = 0.

Theorem 3.5 ([KL12, Thm. 1]). Suppose dµ = 0 and define φ = π
2 (n − q) − θ. Let

B = (Bij)i,j=1,...,n denote the symmetrized covariant derivative of µ, that is,

Bij = (∇eiµ)(ej) =
1

2

(
(∇eiµ)(ej) + (∇ejµ)(ei)

)
.

Then N∗L+ µ is special Lagrangian in T ∗Rn with phase eiθ if and only if

Im
(
eiφ det(I + iB)

)
= 0 and σj

(
Aν(I + iB)−1

)
= (−1)jσj

(
Aν(I − iB)−1

)
for all j = 1, . . . , q and all normal vector fields ν ∈ Γ(NL).

In particular, this implies the following hands-on result for the case q = 2.

Corollary 3.6 ([KL12, Cor. 1]). Suppose q = 2. Then N∗L + µ is special Lagrangian
in T ∗Rn with phase eiθ = ±in−2 if and only if L2 is minimal in Rn and µ ∈ Ω1(L) is
harmonic, i.e., ∆Lµ = dd∗µ+ d∗dµ = 0.

Given the above constructions, the question arises whether they work similarly for other
manifolds than Rn, whose cotangent spaces still possess metrics of holonomy in SU(n).
Indeed, Karigiannis and Min-Oo [KM05] derived an analogous result to Theorem 3.3 for
the standard round sphere Sn. In order to do so, they first endowed the cotangent space
T ∗Sn with a Calabi–Yau structure following [Sző91; Ste93; Anc07]: We identify T ∗Sn with
the complex quadric

Q =
{

(z0, . . . , zn) ∈ Cn+1
∣∣∣ n∑
k=0

z2k = 1
}

via the diffeomorphism

Ψ : T ∗Sn → Q, (x, ξ) 7→ x cosh|ξ|+ i
ξ

|ξ|
sinh|ξ|, (3.3)

which is equivariant with respect to SOn+1(R) ⊂ On+1(C). (Above, the term ξ
|ξ| sinh|ξ| is

to be interpreted as 0 when |ξ| = 0.) From this, T ∗Sn inherits a natural complex structure.
Moreover, utilizing the radial vector field

Z = z0
∂

∂z0
+ · · ·+ zn

∂

∂zn
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on Cn+1, we obtain a nowhere vanishing holomorphic (n, 0)-form by defining

Ω = Zy volCn+1 = Zy(dz0 ∧ · · · ∧ dzn).

Finally, we equip T ∗Sn (thought of as Q) with the complete Ricci-flat Kähler metric derived
in [Ste93], called Stenzel metric. By [Anc07, Lemma 2.1], the corresponding Kähler form is
given by

ωSt =
i

2

n∑
j,k=1

ajkdzj ∧ dz̄k

with

ajk =

(
δjk +

zj z̄k
|z0|2

)
v′ + 2 Re

(
zjzk −

z̄0
z0
zjzk

)
v′′ (3.4)

in a neighborhood of a point where z0 6= 0. Above, v is a function of r = |z|, defined
by a certain differential equation which ensures that the metric is Ricci-flat. For our
purposes, it suffices to know that v′(r), v′′(r) > 0 for r > 0 [Ste93, Prop. 6]. Based on these
arrangements, we obtain a Calabi–Yau structure on T ∗Sn, which justifies studying special
Lagrangians and stating the following theorem.

Theorem 3.7 ([KM05, Thm. 3.1]). Let Lq ⊂ Sn be an oriented immersed submanifold.
Then N∗L is special Lagrangian in T ∗Sn with phase eiθ = ±in−q if and only if Lq is austere
in Sn.

The question that remains open and that we will address in Subsection 4.1 is the following.

Question 3.8. Let Lq ⊂ Sn be an oriented immersed submanifold and µ ∈ Ω1(L). Consider

Xµ =
{

(x, ξ + µx) ∈ T ∗Sn|L
∣∣x ∈ L, ξ ∈ N∗xL} (“N∗L+ µ”).

Under what conditions on L and µ is N∗L+ µ special Lagrangian in T ∗Sn?

3.3. (Co-)associative submanifolds of Λ2
−(T ∗X) for X4 = R4, S4,CP2

Let us proceed to associative and coassociative submanifolds of the space of anti-self-dual
2-forms Λ2

−(T ∗X), where X4 represents either Euclidean space R4, the 4-dimensional sphere
S4 or the complex projective plane CP2. To begin with, we revisit the bundle constructions
in [IKM05] leading to candidates E and F for (co-)associative submanifolds of Λ2

−(T ∗R4).
In this case, the ambient manifold is naturally isomorphic to R7 and possesses a canonical
parallel G2-structure ϕ [BS89].

Consider an oriented immersed submanifold L2 ⊂ R4 and fix some oriented local or-
thonormal adapted frame (e1, e2, ν3, ν4) along L with dual coframe (e1, e2, ν3, ν4). The
restricted bundle Λ2

−(T ∗R4)|L is locally trivialized by the sections f1 = e1 ∧ e2 − ν3 ∧ ν4,
f2 = e1 ∧ ν3 − ν4 ∧ e2 and f3 = e1 ∧ ν4 − e2 ∧ ν3. Since f1 is invariant under change of
coordinates, it is globally defined on L. In fact, it can be written as f1 = volL − ∗R4volL.
It thus spans a rank 1 bundle E = span{f1}, whose orthogonal complement F = E⊥ in
Λ2
−(T ∗R4)|L is locally represented by F

loc
= span{f2, f3}. The total spaces of these bundles
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are 3- and 4-dimensional submanifolds of Λ2
−(T ∗R4), respectively. Ionel, Karigiannis and

Min-Oo [IKM05] derived necessary and sufficient conditions on L2 for E (F ) to be associa-
tive (coassociative) in R7. As their results are a special case of the “twisted” version in the
subsequent paper [KL12], we go straight to the constructions therein.

Karigiannis and Leung examined the spaces

XE
σ =

{
(x, η + σx) ∈ Λ2

−(T ∗R4)|L
∣∣x ∈ L, η ∈ Ex} (“E + σ”),

XF
η =

{
(x, ηx + σ) ∈ Λ2

−(T ∗R4)|L
∣∣x ∈ L, σ ∈ Fx} (“η + F”)

for sections σ ∈ Γ(F ) and η ∈ Γ(E). This is a “twisting” of the bundle E (F ) over L
obtained by affinely translating each fiber Ex (Fx) by a vector σx ∈ Fx (ηx ∈ Ex) in the
orthogonal complement. The spaces TL and NL can be endowed with the natural complex
structures locally given by Je1 = e2, Je2 = −e1 and Jν3 = ν4, Jν4 = −ν3. Furthermore,
F can be viewed as a holomorphic line bundle with complex structure locally determined
by Jf2 = f3, Jf3 = −f2 (see Subsection 4.2 for more details). As a consequence, it
makes sense to talk about L2 being negative superminimal in R4, which means that
AJν = −JAν holds for all normal vector fields ν ∈ Γ(NL), and about σ ∈ Γ(F ) being
holomorphic. They proved the following result.

Theorem 3.9 ([KL12, Thm. 2, 3]).

1. The submanifold E + σ is associative in Λ2
−(T ∗R4) if and only if L2 is minimal in

R4 and σ ∈ Γ(F ) is holomorphic.

2. The submanifold η + F is coassociative in Λ2
−(T ∗R4) if and only if L2 is negative

superminimal in R4 and η ∈ Γ(E) is parallel with respect to the connection ∇E on E
induced by the Levi-Civita connection on R4.

Proof (idea). 1: First, determine a basis for the tangent space to XE
σ at every point

ω ∈ Φ(XE
σ ) via the immersion Φ : XE

σ → Λ2
−(T ∗R4). Identify Tω(Λ2

−(T ∗R4)) ∼= ImO and
plug the basis vectors into the associator [·, ·, ·]. Finally, establish the conditions under
which that expression vanishes (cf. Proposition 2.22(iii)).

2: To begin with, find a basis for the tangent space to XF
η at every point ω ∈ Ψ(XF

η )
using the immersion Ψ : XF

η → Λ2
−(T ∗R4). Then determine the conditions under which

the associative 3-form ϕ vanishes on XF
η by plugging in the basis vectors (cf. Proposi-

tion 2.23(iv)).

Remark 3.10. As σ = 0 and η = 0 are holomorphic and parallel, respectively, we can easily
read off the result derived in [IKM05].

As in the special Lagrangian case, the idea arises to generalize this construction to
other manifolds X4, for which M7 = Λ2

−(T ∗X4) still possesses a metric of holonomy in G2.
The first complete, noncompact examples of such metrics of holonomy equal to G2 were
constructed by Bryant and Salamon [BS89] for X4 = S4,CP2 with the standard metrics.
Before stating the theorem, we clarify the setting.

We equip M7 with the connection ∇ induced by the Levi-Civita connection on (X4, g).
This provides a canonical splitting of its tangent space TωM ∼= Hω ⊕ Vω into the hori-
zontal and vertical spaces for any ω ∈ M . We can identify Hω with the tangent space
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Tπ(ω)X of X via the linear isomorphism Horω = (π∗|Hω)−1 : Tπ(ω)X → Hω, where
π : M7 = Λ2

−(T ∗X) → X stands for the projection onto the base. On the other hand,
Vω can be identified with the fiber Mπ(ω) = Λ2

−(T ∗π(ω)X) through the linear isomorphism
Vertω : Mπ(ω) → Vω = Tω(Mπ(ω)), σ 7→ d

dt(ω + tσ)|t=0. This follows from the fact that
Mπ(ω) is a vector space as M is a vector bundle. (See [Wen22, Sec. 19.1] for more details.)
Due to these identifications, the metric g on X induces metrics gH and gV with canonical
volume forms volH and volV on H and V, respectively.

Theorem 3.11 ([BS89, Thm. 4.1]). Let (X4, g) be either S4 with the standard round
metric or CP2 with the Fubini-Study metric, and let r denote the radial coordinate in the
vertical fibers. Then there exist positive functions u = u(r) and v = v(r) such that

gM7 = u2gH ⊕ v2gV
defines a complete metric on M7 = Λ2

−(T ∗X4) with holonomy equal to G2. Its fundamental
3-form ϕ is given by

ϕ = v3 volV + u2v dθ,

where θω = π∗ω (ω ∈M) is the canonical soldering 2-form on M .

Let us now restrict the vector bundle M7 = Λ2
−(T ∗X4)→ X to an oriented immersed

submanifold L2 ⊂ X4 and fix some oriented local orthonormal adapted frame (e1, e2, ν3, ν4)
along L with dual coframe (e1, e2, ν3, ν4). The anti-self-dual 2-forms f1 = e1 ∧ e2− ν3 ∧ ν4,
f2 = e1 ∧ ν3 − ν4 ∧ e2 and f3 = e1 ∧ ν4 − e2 ∧ ν3 locally trivialize Λ2

−(T ∗X)|L. We
denote the horizontal lifts of the tangent and normal vectors in TX|L to H by ēi = Hor ei,
ν̄j = Hor νj , i = 1, 2, j = 3, 4, and the vertical lifts of the anti-self-dual 2-forms on X to V
by f̌k, k = 1, 2, 3. Furthermore, we refer to their dual horizontal and vertical 1-forms as
ēi, ν̄j and f̌k, respectively. The following diagram provides a compact illustration of the
situation described for an ω ∈ π−1(L) ⊂M :

span{ē1, ē2, ν̄3, ν̄4}|ω span{f̌1, f̌2, f̌3}|ω

TωM = Tω
(
Λ2
−(T ∗X)

) ∼= Hω ⊕ Vω

Tπ(ω)X Mπ(ω) = Λ2
−(T ∗π(ω)X)

span{e1, e2, ν3, ν4}|π(ω) span{f1, f2, f3}|π(ω)

Horω ∼= Vertω ∼=

As a result, the fundamental 3-form ϕ in Theorem 3.11 and its Hodge dual ψ = ∗ϕ restricted
to L are locally given by

ϕ = v3(f̌1 ∧ f̌2 ∧ f̌3) + u2v f̌1 ∧ (ē1 ∧ ē2 − ν̄3 ∧ ν̄4)
+ u2v f̌2 ∧ (ē1 ∧ ν̄3 − ν̄4 ∧ ē2) + u2v f̌3 ∧ (ē1 ∧ ν̄4 − ē2 ∧ ν̄3) (3.5)

and

ψ = u4(ē1 ∧ ē2 ∧ ν̄3 ∧ ν̄4)− u2v2 f̌2 ∧ f̌3 ∧ (ē1 ∧ ē2 − ν̄3 ∧ ν̄4)
− u2v2 f̌3 ∧ f̌1 ∧ (ē1 ∧ ν̄3 − ν̄4 ∧ ē2)− u2v2 f̌1 ∧ f̌2 ∧ (ē1 ∧ ν̄4 − ē2 ∧ ν̄3) (3.6)
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[KM05, (17), (18)].
As before, f1 is invariant under change of coordinates and thus globally defined on

L (via f1 = volL − ∗X4volL). Its span therefore defines a rank 1 bundle E = span{f1}
with orthogonal complement F = E⊥

loc
= span{f2, f3} in Λ2

−(T ∗X)|L. The total spaces of
these bundles are 3- and 4-dimensional submanifolds of M7 = Λ2

−(T ∗X4), respectively.
Once again, we endow TL and NL with the natural complex structures locally given
by Je1 = e2, Je2 = −e1 and Jν3 = ν4, Jν4 = −ν3. Karigiannis and Min-Oo proved the
following result.

Theorem 3.12 ([KM05, Thm. 4.3]). Let X4 = S4 or CP2. Then:

1. The submanifold E is associative in Λ2
−(T ∗X4) if and only if L2 is minimal in X4.

2. The submanifold F is coassociative in Λ2
−(T ∗X4) if and only if L2 is negative super-

minimal in X4.

Proof (idea). 1: First, determine a basis for the tangent space to E at every point ω ∈ Φ(E)
via the immersion Φ : E → Λ2

−(T ∗X). Then plug the three basis vectors into the
coassociative 4-form ψ and establish the conditions under which the resulting 1-form
vanishes (cf. Proposition 2.22(iv)).

2: To begin with, find a basis for the tangent space to F at every point ω ∈ Ψ(F ) using
the immersion Ψ : F → Λ2

−(T ∗X). Determine the conditions under which the associative
3-form ϕ vanishes on F by plugging in the basis vectors (cf. Proposition 2.23(iv)).

We will answer the following remaining question in Subsection 4.2.

Question 3.13. Let L2 ⊂ X4 = S4,CP2 be an oriented immersed submanifold and
σ ∈ Γ(F ), η ∈ Γ(E). Consider the spaces

XE
σ =

{
(x, η + σx) ∈ Λ2

−(T ∗X4)|L
∣∣x ∈ L, η ∈ Ex} (“E + σ”),

XF
η =

{
(x, ηx + σ) ∈ Λ2

−(T ∗X4)|L
∣∣x ∈ L, σ ∈ Fx} (“η + F”).

Under what conditions on L, σ and η are E + σ and η + F associative and coassociative in
Λ2
−(T ∗X4), respectively?

3.4. Cayley submanifolds of S−(R4) and S−(S4)

We now come to the construction of Cayley submanifolds in the negative spinor bundle
S−(X), where X4 is either Euclidean space R4 or the 4-dimensional sphere S4. To begin
with, let us briefly review some preliminaries discussed in [IKM05, Sec. 4.4] for X = R4

with the standard metric, which also hold true for S4 with the standard round metric.
Let e1, . . . , e4 be an orthonormal basis of T ∗xX at a fixed point x ∈ X4 = R4, S4. Then

the Clifford algebra Cl(T ∗xX) ∼= Cl(TxX) is generated by e1, . . . , e4 subject to the relations

ei · ej + ej · ei = −2δij . (3.7)

We write S± for the ±1 eigenspace of the pinor representation γ(λ) ∈ End(S) of the volume
element λ = e1 · e2 · e3 · e4 ∈ Cl(T ∗xX). Both S+ and S− are isomorphic to the quaternions
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H (see Appendix B), and Clifford multiplication by a covector α ∈ T ∗xX interchanges them
since λ ·α = −α ·λ. On the other hand, octonionic multiplication satisfies u(uv) = u2v and
u1(ū2v) = −u2(ū1v) (2.4) for all u, u1, u2, v ∈ O with u1 and u2 orthogonal. Combining
these two identities yields

ui(ujv) + uj(uiv) = −2δijv (3.8)

for any orthonormal basis u1, . . . , u4 of He and any v ∈ O. Furthermore, multiplication
by elements in He interchanges H and He (see Appendix C). Comparing (3.7) and (3.8),
we see that the pinor representation at each point x ∈ X is obtained from octonionic
multiplication by identifying S = S+ ⊕ S− ∼= He⊕H ∼= O and T ∗xX

∼= He. For covectors
α ∈ T ∗xX, we write it as

γ : T ∗xX → End(S+ ⊕ S−), γ(α)(s) = αs,

where the product stands for octonionic multiplication. When composing two elements of
this representation, it is crucial to remember that (γ(α1)γ(α2))(s) = α1(α2s) is in general
not equal to (α1α2)s because O is not associative. For more details on spin geometry and
representations, see Appendix B and, e.g., [Har90, Ch. 9–11], [Wen22, Sec. 50].

We now have the tools to review the bundle constructions in [IKM05] which provide
candidates V± for Cayley submanifolds of S−(R4). In this case, the ambient manifold is
naturally isomorphic to R8 and possesses a canonical parallel Spin(7)-structure Φ [BS89].

Consider an oriented immersed submanifold L2 ⊂ R4 and fix some oriented local or-
thonormal adapted frame (e1, e2, ν3, ν4) along L with dual coframe (e1, e2, ν3, ν4). Since
e1, e2, ν3, ν4 are orthonormal, they satisfy e1 · e2 = 1

2e
1 ∧ e2 and ν3 · ν4 = 1

2ν
3 ∧ ν4 (see

(B.1)), which implies that the terms γ(e1)γ(e2) = γ(e1 · e2) and γ(ν3)γ(ν4) = γ(ν3 · ν4) are
independent of the choice of frame and hence globally defined. Let us now focus on a fixed
point x ∈ L and consider the restricted operators γ(e1)γ(e2) and γ(ν3)γ(ν4) : S− → S−.
The identity (ue)((ve)(wy)) = w((ue)((ve)y)) for u, v, w, y ∈ H, derived from (2.4), shows
that both γ(e1)γ(e2) and γ(ν3)γ(ν4) are complex linear with respect to the natural complex
structure jL = e1e2 ∈ {u ∈ ImH | |u| = 1} on S− ∼= H. (A quick computation yields
that jL is independent of the choice of frame.) As γ(e1 · e2)2 = γ(ν3 · ν4)2 = −1, the two
operators share the eigenvalues jL and −jL. Combining this with the fact that they are
simultaneously diagonalizable because they commute, γ(e1)γ(e2) and γ(ν3)γ(ν4) differ at
most by a sign. Due to the relation γ(e1 · e2)γ(ν3 · ν4) = γ(λ) = ±1 on S±, they must be
equal on S−. Consequently, there exists a global canonical complex structure Γ on the
restricted bundle S−(R4)|L, locally given by Γ = γ(e1)γ(e2) = γ(ν3)γ(ν4) : S− → S−. This
operator provides a splitting of S−(R4)|L = V+ ⊕ V− into the two eigenbundles V± of rank
2 corresponding to its eigenvalues ±jL. The total spaces of these bundles are 4-dimensional
submanifolds of S−(R4), and Ionel–Karigiannis–Min-Oo [IKM05] derived necessary and
sufficient conditions on L2 for V± to be Cayley in R8. As in the previous subsection, their
findings are a special case of the “twisted” version in [KL12], so we go straight to the
constructions therein.

Karigiannis and Leung examined the space

Xψ =
{

(x, ξ + ψx) ∈ S−(R4)|L
∣∣x ∈ L, ξ ∈ (V+)x

}
(“V+ + ψ”)
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for a section ψ ∈ Γ(V−). This is a “twisting” of the bundle V+ over L obtained by affinely
translating each fiber (V+)x by a vector ψx ∈ (V−)x in the orthogonal complement. Similarly
to the G2 case, V± can be viewed as a holomorphic line bundle with complex structures
locally given by Je1 = e2, Je2 = −e1 on the base and −Γ on the fiber (see Subsection 4.3
for more details). They proved the following result.

Theorem 3.14 ([KL12, Thm. 4]). The submanifold V+ + ψ is Cayley in S−(R4) if and
only if L2 is minimal in R4 and ψ ∈ Γ(V−) is holomorphic.

Proof (idea). First, determine a basis for the tangent space to Xψ at every point s ∈ Ψ(Xψ)
via the immersion Ψ : Xψ → S−(R4). Identify Ts(S−(R4)) ∼= O and plug the basis vectors
into the purely imaginary four-fold cross product Im(· × · × · × ·). Finally, establish the
conditions under which that expression vanishes (cf. Proposition 2.27(iii)).

Remark 3.15. In the same way, we obtain an analogous result for χ+ V− with χ ∈ Γ(V+).

Remark 3.16. As ψ = 0 is holomorphic, we can easily read off the result derived in [IKM05].

The process of generalizing this construction to other manifolds X4, for which M8 =
S−(X4) still possesses a complete Spin(7)-metric, starts again with a result by Bryant and
Salamon, who constructed such a metric for X4 = S4 with the standard round metric g.
Before stating the theorem, we clarify the setting.

As described in Appendix B, there exists a natural connection ∇, the spin connection,
on M8, induced by the Levi-Civita connection on (S4, g). This provides a natural splitting
of its tangent space TsM ∼= Hs ⊕ Vs into the horizontal and vertical spaces for any s ∈M .
We can identify Hs with the tangent space Tπ(s)S

4 of S4 via the linear isomorphism
Hors = (π∗|Hs)−1 : Tπ(s)S

4 → Hs, where π : M8 = S−(S4)→ S4 stands for the projection
onto the base. On the other hand, Vs can be identified with the fiber Mπ(s) = (S−)π(s)(S

4)
through the linear isomorphism Verts : Mπ(s) → Vs = Ts(Mπ(s)), σ 7→ d

dt(s+ tσ)|t=0. As
in the G2 case, this follows from the fact that Mπ(s) is a vector space. Due to these
identifications, the metric g on S4 induces metrics gH and gV with natural volume forms
volH and volV on H and V, respectively.

Theorem 3.17 ([BS89, Thm. 4.2], [Kar10, Sec. 2.2]). Consider S4 with the standard round
metric and let r denote the radial coordinate in the vertical fibers. Then there exist positive
functions u = u(r) and v = v(r) such that

gM8 = u2gH ⊕ v2gV

defines a complete metric on M8 = S−(S4) with holonomy equal to Spin(7). Its fundamental
4-form Φ is given by

Φ = u4 volH − u2v2(ω1 ∧ σ1 + ω2 ∧ σ2 + ω3 ∧ σ3) + v4 volV ,

where ω1, ω2, ω3 is an orthogonal basis of norm
√

2 for the self-dual 2-forms on H and
σ1, σ2, σ3 is the corresponding orthogonal basis for the self-dual 2-forms on V.

Remark 3.18. The factor
√

2 in the preceding theorem appears due to our convention
for the inner product on the exterior algebra ΛkV over some vector space V , namely
〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 = det(〈vi, wj〉) for vi, wj ∈ V (see (B.2)).
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Let us now restrict the vector bundle M8 = S−(S4) → S4 to an oriented immersed
submanifold L2 ⊂ S4 and fix some oriented local orthonormal adapted frame (e1, e2, ν3, ν4)
along L with dual coframe (e1, e2, ν3, ν4). We denote its horizontal lift to H by ēi = Hor ei,
ν̄j = Hor νj , and their dual horizontal 1-forms by ēi, ν̄j , i = 1, 2, j = 3, 4.

As in the case of S−(R4), there exists a natural complex structure Γ on the restricted
bundle S−(S4)|L, given by Γ = γ(e1)γ(e2) = γ(ν3)γ(ν4). This operator provides a splitting
of S−(S4)|L = V+ ⊕ V− into the two eigenbundles V± of rank 2 corresponding to its
eigenvalues ±jL = ±e1e2. Using similar reasoning as in the derivation of the equality
γ(e1)γ(e2) = γ(ν3)γ(ν4), we obtain

γ(e1 ∧ e2) = γ(ν3 ∧ ν4), γ(e1 ∧ ν3) = −γ(e2 ∧ ν4), γ(e1 ∧ ν4) = γ(e2 ∧ ν3). (3.9)

Consider the standard basis

f1 = e1 ∧ e2 + ν3 ∧ ν4, f2 = e1 ∧ ν3 + ν4 ∧ e2, f3 = e1 ∧ ν4 + e2 ∧ ν3

of self-dual 2-forms on S4. By (3.9), it satisfies

γ(f1) = γ(e1 ∧ e2) + γ(ν3 ∧ ν4) = 2γ(e1 ∧ e2) = 2γ(ν3 ∧ ν4) = 4Γ,

γ(f2) = γ(e1 ∧ ν3) + γ(ν4 ∧ e2) = 2γ(e1 ∧ ν3) = −2γ(e2 ∧ ν4), (3.10)

γ(f3) = γ(e1 ∧ ν4) + γ(e2 ∧ ν3) = 2γ(e1 ∧ ν4) = 2γ(e2 ∧ ν3).

Using this, we compute that γ(f i)γ(f j) = −γ(f j)γ(f i) for i 6= j, γ(f i)2 = −16 and

γ(f1)γ(f2) = 4γ(e1 ∧ e2)γ(e1 ∧ ν3) = 8γ(e2 ∧ ν3) = 4γ(f3),

γ(f1)γ(f3) = 4γ(e1 ∧ e2)γ(e1 ∧ ν4) = 8γ(e2 ∧ ν4) = −4γ(f2), (3.11)

γ(f2)γ(f3) = 4γ(e1 ∧ ν3)γ(e1 ∧ ν4) = 8γ(ν3 ∧ ν4) = 4γ(f1).

Now fix a local unit spinor s1 in V+. Then {s1, s2 = 1
4γ(f1)s1 = Γs1 = jLs1} and

{s3 = 1
4γ(f2)s1, s4 = 1

4γ(f3)s1 = Γs3 = −jLs3} form local orthonormal frames for V+ and
V−, respectively. The latter follows from the fact that Γ anti-commutes with both γ(f2)
and γ(f3), and that Γγ(f2) = γ(f3). We denote the vertical lifts of these spinors to V
by šk, with dual vertical 1-forms šk, k = 1, . . . , 4. As in the G2 case, we summarize the
described setup using a diagram:

span{ē1, ē2, ν̄3, ν̄4}|s span{š1, š2, š3, š4}|s

TsM = Ts
(
S−(S4)

) ∼= Hs ⊕ Vs

Tπ(s)S
4 Mπ(s) = (S−)π(s)(S

4)

span{e1, e2, ν3, ν4}|π(s) span{s1, s2, s3, s4}|π(s)

Hors ∼= Verts ∼=
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Consequently, the fundamental 4-form Φ in Theorem 3.17 restricted to L is locally given by

Φ = u4ē1ē2ν̄3ν̄4 − u2v2(ω1σ
1 + ω2σ

2 + ω3σ
3) + v4š1š2š3š4

= u4ē1ē2ν̄3ν̄4 − u2v2(ē1ē2 + ν̄3ν̄4)(š1š2 + š3š4)− u2v2(ē1ν̄3 + ν̄4ē2)(š1š3 + š4š2)

− u2v2(ē1ν̄4 + ē2ν̄3)(š1š4 + š2š3) + v4š1š2š3š4, (3.12)

where we omitted the wedge product symbols for clarity. Karigiannis and Min-Oo proved
the following result.

Theorem 3.19 ([KM05, Thm. 4.8]). The submanifold V± is Cayley in S−(S4) if and only
if L2 is minimal in S4.

Proof (idea). To begin with, determine a basis for the tangent space to V± at every point
s ∈ Ψ(V±) via the immersion Ψ : V± → S−(S4). Establish the conditions under which the
the rank 7 bundle valued 4-form η (see Proposition 2.27(iv)) vanishes on V± by plugging
in the basis vectors.

Remark 3.20. Contrary to [IKM05; KL12] and this thesis, the authors of [KM05] used the
sign convention λ = −e1 · e2 · ν3 · ν4 for the volume element. Due to this, they actually
proved the above statement for the positive spinor bundle. The general idea remains the
same but some adaptions are necessary to work out the statements and proof for the
negative spinor bundle. In particular, the fundamental 4-form Φ+ on S+(S4) differs by
some signs from our formula for Φ on S−(S4) (see (3.12)):

Φ+ = u4ē1ē2ν̄3ν̄4 + u2v2(ē1ē2 − ν̄3ν̄4)(š1š2 − š3š4) + u2v2(ē1ν̄3 − ν̄4ē2)(š1š3 − š4š2)
+ u2v2(ē1ν̄4 − ē2ν̄3)(š1š4 − š2š3) + v4š1š2š3š4

[Kar10, Sec. 2.2], [KM05, Thm. 4.5]. For the purpose of being coherent and sticking to one
convention, we keep considering the negative spinor bundle, for which the above statement
can be proved analogously to [KM05, Thm. 4.8].

As in the special Lagrangian and (co-)associative cases, we look at the following problem.

Question 3.21. Let L2 ⊂ S4 be an oriented immersed submanifold and ψ ∈ Γ(V−).
Consider the space

Xψ =
{

(x, ξ + ψx) ∈ S−(S4)|L
∣∣x ∈ L, ξ ∈ (V+)x

}
(“V+ + ψ”).

Under what conditions on L and ψ is V+ + ψ Cayley in S−(S4)?
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4. Analogous constructions for the Stenzel and Bryant–Salamon
metrics

This section represents the core of this thesis and answers the three questions posed in
Section 3. In other words, it provides necessary and sufficient conditions for the total
spaces of the “twisted” bundles to be calibrated submanifolds in manifolds with special
holonomy. This can be seen as a generalization of [KL12] to the case of complete, nonflat,
noncompact manifolds.

4.1. Special Lagrangians in T ∗Sn with the Stenzel metric

We first address Question 3.8. So let Lq ⊂ Sn be an oriented immersed submanifold,
µ ∈ Ω1(L) and Xµ (“N∗L+ µ”) be the space obtained by affinely translating each fiber
N∗xL by µx ∈ T ∗xL. As before, Sn stands for the standard round sphere and we endow T ∗Sn

with the Calabi–Yau structure described in Subsection 3.2. Our goal is to find conditions
on L and µ so that N∗L+ µ is special Lagrangian in T ∗Sn. We start with the conditions
for it to be Lagrangian.

Theorem 4.1. The submanifold N∗L+ µ is Lagrangian in T ∗Sn if and only if µ = 0.

Proof. Let (e1, . . . , eq, νq+1, . . . , νn) be a local orthonormal adapted coframe along L. The
immersion of N∗L+ µ into T ∗Sn, Φ : Xµ → T ∗Sn, is locally given by

Φ : (u, t) 7→
(
x(u),

n∑
k=q+1

tkν
k(u) + µ(u)

)
=
(
x(u),

n∑
k=q+1

tkν
k(u) +

q∑
l=1

al(u)el(u)
)
,

where u = (u1, . . . , uq) and t = (tq+1, . . . , tn) are the coordinates on L and on the fiber,
respectively, x = (x1, . . . , xn) is the local immersion of L into Sn, and a = (a1, . . . , aq) are
the coordinates of µ with respect to the local trivialization T ∗L

loc
= span{e1, . . . , eq}. For

simplicity, let us omit the dependence on u in the following.
Define ν̂(t) =

∑n
k=q+1 tkν

k and y(t) = |ν̂(t) + µ|2. Since e1, . . . , eq, νq+1, . . . , νn are
orthonormal, we get

y(t) = |ν̂(t) + µ|2 =
∣∣∣ n∑
k=q+1

tkν
k +

q∑
l=1

ale
l
∣∣∣2 =

n∑
k=q+1

|tk|2 +

q∑
l=1

|al|2 = |t|2 + |a|2. (4.1)

Restricting the diffeomorphism Ψ : T ∗Sn → Q (see (3.3)) to Φ(Xµ) ⊂ T ∗Sn gives

Ψ(x, ν̂ + µ) = x cosh
√
y + i

ν̂ + µ
√
y

sinh
√
y, (4.2)

where the second term is to be interpreted as 0 when y = 0.
To simplify the computations, let us modify the basis we are working with. Currently,

we are writing everything in terms of (x, e1, . . . , eq, νq+1, . . . , νn), which is an adapted
orthonormal moving frame of Rn+1 along L. We now fix a point (u∗, t∗) ∈ Xµ with
t∗ 6= 0. By imposing this additional condition, we guarantee that y vanishes nowhere in a
sufficiently small neighborhood of (u∗, t∗). Let (e∗0, . . . , e

∗
n) denote the orthonormal basis of

36



Rn+1 given by the moving frame at that fixed point. Since Ψ is equivariant with respect to
SOn+1(R) ⊂ On+1(C), we can assume that ν̂(u∗, t∗) = |t∗|νq+1(u∗) = |t∗|e∗q+1 = t∗q+1e

∗
q+1.

With respect to this basis, Φ(u∗, t∗) takes the form

Φ(u∗, t∗) = (x, ν̂ + µ)(u∗, t∗) =
(
e∗0, |t∗|e∗q+1 +

q∑
l=1

al(u
∗)e∗l

)
.

Substituting this into (4.2), we obtain

z∗ = (Ψ ◦ Φ)(u∗, t∗) = cosh
√
y(u∗, t∗) e∗0 + i

|t∗|e∗q+1 +
∑q

l=1 al(u
∗)e∗l√

y(u∗, t∗)
sinh

√
y(u∗, t∗),

which simplifies to

z∗ =
n∑
i=1

z∗i e
∗
i = cosh

√
y e∗0 +

q∑
l=1

(
i

sinh
√
y

√
y

al

)
e∗l + i

sinh
√
y

√
y
|t∗|e∗q+1,

omitting the dependence on (u∗, t∗). Therefore, the coefficients of the Kähler form ωSt

corresponding to the Stenzel metric (see (3.4)) are given by

ajk =

(
δjk +

ajak
y

tanh2√y
)
v′ +

4ajak
y

sinh2√y v′′, j, k ≤ q,

aj,q+1 = aq+1,j =
|t∗|aj
y

tanh2√y v′ + 4|t∗|aj
y

sinh2√y v′′, j ≤ q,

aq+1,q+1 =

(
1 +
|t∗|2

y
tanh2√y

)
v′ +

4|t∗|2

y
sinh2√y v′′,

ajk = δjk v
′, j or k ≥ q + 2

at the point z∗. Their symmetry allows us to write ωSt as

ωSt =
i

2

∑
1≤j≤k≤q

2−δjkajk(dzj ∧ dz̄k + dzk ∧ dz̄j) +
i

2

q∑
j=1

aj,q+1(dzj ∧ dz̄q+1 + dzq+1 ∧ dz̄j)

+
i

2
aq+1,q+1dzq+1 ∧ dz̄q+1 +

i

2

n∑
j=q+2

v′dzj ∧ dz̄j . (4.3)

We want to determine when ωSt vanishes on the tangent space to N∗L+ µ at z∗. That
space is spanned by Ei = (Ψ ◦ Φ)∗(∂ui) and Fj = (Ψ ◦ Φ)∗(∂tj ) for i = 1, . . . , q and
j = q + 1, . . . , n. Specifically, Ei is given by

Ei =

[
sinh
√
y

√
y

( q∑
l=1

al
∂al
∂ui

)
e∗0 + cosh

√
y e∗i

+ i
1

y

( q∑
l=1

al
∂al
∂ui

)(
cosh

√
y −

sinh
√
y

√
y

)
(ν̂ + µ) + i

sinh
√
y

√
y

(
∇ei ν̂ +∇eiµ

) ]∣∣∣∣∣
z∗
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for all i = 1, . . . , q. As we are working with normal coordinates, we can use (3.2) to compute

∇ei ν̂ = ∇ei
( n∑
k=q+1

tkν
k
)

=
n∑

k=q+1

tk(∇eiνk) =
n∑

k=q+1

tk

( q∑
l=1

Akile
l
)

=

q∑
l=1

( n∑
k=q+1

tkA
k
il

)
el =

q∑
l=1

Aν̂ile
l =

q∑
l=1

Aν̂ile
∗
l

and

∇eiµ = ∇ei
( q∑
l=1

ale
l
)

=

q∑
l=1

(
∂al
∂ui

el + al∇eiel
)

=

q∑
l=1

(
∂al
∂ui

el −
n∑

k=q+1

alA
k
ilν

k

)

=

q∑
l=1

∂al
∂ui

el −
n∑

k=q+1

( q∑
l=1

alA
k
il

)
νk =

q∑
l=1

∂al
∂ui

e∗l −
n∑

k=q+1

( q∑
l=1

alA
k
il

)
e∗k

at z∗. Thus, every Ei takes the form

Ei =
sinh
√
y

√
y

( q∑
l=1

al
∂al
∂ui

)
e∗0 + cosh

√
y e∗i

+ i
1

y

( q∑
l=1

al
∂al
∂ui

)(
cosh

√
y −

sinh
√
y

√
y

)(
|t∗|e∗q+1 +

q∑
l=1

ale
∗
l

)
+ i

sinh
√
y

√
y

(
q∑
l=1

(
Aν̂il +

∂al
∂ui

)
e∗l −

n∑
k=q+1

( q∑
l=1

alA
k
il

)
e∗k

)
.

On the other hand, Fj = (Ψ ◦ Φ)∗(∂tj ) is given by

Fj =

[
tj

sinh
√
y

√
y

e∗0 + i
tj
y

(
cosh

√
y −

sinh
√
y

√
y

)
(ν̂ + µ) + i

sinh
√
y

√
y

νj

]∣∣∣∣∣
z∗

for all j = q + 1, . . . , n. That is,

Fq+1 = |t∗|
sinh
√
y

√
y

e∗0 + i
|t∗|
y

(
cosh

√
y −

sinh
√
y

√
y

)(
|t∗|e∗q+1 +

q∑
l=1

ale
∗
l

)
+ i

sinh
√
y

√
y

e∗q+1

= |t∗|
sinh
√
y

√
y

e∗0 + i
1

y

(
|t∗|2 cosh

√
y + |a|2

sinh
√
y

√
y

)
e∗q+1

+ i
|t∗|
y

(
cosh

√
y −

sinh
√
y

√
y

) q∑
l=1

ale
∗
l ,

Fj = i
sinh
√
y

√
y

e∗j , j = q + 2, . . . , n,

where we used y = |t∗|2 + |a|2 (4.1) to obtain the second line.
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Our goal is to compute ωSt of any pair of vectors in the basis E1, . . . , Eq, Fq+1, . . . , Fn.
To do so, we first need to determine dzj and dz̄j of every basis vector for all j = 1, . . . , n.
For every i = 1, . . . , q, we find

dzj(Ei) = dz̄j(Ei)

= δij cosh
√
y

+ i

(
aj
y

( q∑
l=1

al
∂al
∂ui

)(
cosh

√
y −

sinh
√
y

√
y

)
+

(
Aν̂ij +

∂aj
∂ui

)
sinh
√
y

√
y

)
for j ≤ q,

dzq+1(Ei) = −dz̄q+1(Ei)

= i

(
|t∗|
y

( q∑
l=1

al
∂al
∂ui

)(
cosh

√
y −

sinh
√
y

√
y

)
−
( q∑
l=1

alA
q+1
il

)sinh
√
y

√
y

)
for j = q + 1, and

dzj(Ei) = −dz̄j(Ei) = −i
( q∑
l=1

alA
j
il

)sinh
√
y

√
y

for j ≥ q + 2. The remaining basis vectors satisfy

dzj(Fq+1) = −dz̄j(Fq+1)

=


i
|t∗|aj
y

(
cosh

√
y − sinh

√
y√

y

)
, j ≤ q,

i 1
y

(
|t∗|2 cosh

√
y + |a|2 sinh

√
y√

y

)
, j = q + 1,

0, j ≥ q + 2,

and

dzj(Fi) = −dz̄j(Fi) = iδij
sinh
√
y

√
y

, i = q + 2, . . . , n, j = 1, . . . , n.

We start with the pair (Fq+1, Ei) for i = 1, . . . , q. Let j, k ∈ {1, . . . , q} be arbitrary.
Using the above formulas, we compute

(dzj ∧ dz̄k + dzk ∧ dz̄j)(Fq+1, Ei)

= i
|t∗|
y

(
cosh

√
y −

sinh
√
y

√
y

)(
aj(dzk + dz̄k)(Ei) + ak(dzj + dz̄j)(Ei)

)
= i
|t∗|
y

(
cosh

√
y −

sinh
√
y

√
y

)
(2ajδki + 2akδji) cosh

√
y,

(dzj ∧ dz̄q+1 + dzq+1 ∧ dz̄j)(Fq+1, Ei)

= i
|t∗|aj
y

(
cosh

√
y −

sinh
√
y

√
y

)
(dzq+1 + dz̄q+1)(Ei)

+ i
1

y

(
|t∗|2 cosh

√
y + |a|2

sinh
√
y

√
y

)
(dzj + dz̄j)(Ei)

= 0 + i
1

y

(
|t∗|2 cosh

√
y + |a|2

sinh
√
y

√
y

)
(2δij cosh

√
y),
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(dzq+1 ∧ dz̄q+1)(Fq+1, Ei)

= i
1

y

(
|t∗|2 cosh

√
y + |a|2

sinh
√
y

√
y

)
(dzq+1 + dz̄q+1)(Ei) = 0.

For j ≥ q+2, Fq+1 satisfies dzj(Fq+1) = dz̄j(Fq+1) = 0, implying that (dzj∧dz̄j)(Fq+1, Ei) =
0. Substituting these formulas into (4.3) yields

ωSt(Ei, Fq+1) =
|t∗| cosh

√
y

y

(
cosh

√
y −

sinh
√
y

√
y

) q∑
j=1

ajaij

+ ai,q+1
cosh

√
y

y

(
|t∗|2 cosh

√
y + |a|2

sinh
√
y

√
y

)
+ 0 + 0

=
|t∗| cosh

√
y

y

(
cosh

√
y −

sinh
√
y

√
y

)
·

(
q∑
j=1

((
ajδij +

aia
2
j

y
tanh2√y

)
v′ +

4aia
2
j

y
sinh2√y v′′

))

+
cosh

√
y

y

(
|t∗|2 cosh

√
y + |a|2

sinh
√
y

√
y

)
·
(
|t∗|ai
y

tanh2√y v′ + 4|t∗|ai
y

sinh2√y v′′
)

= ai
|t∗| cosh

√
y

y

·

[(
cosh

√
y −

sinh
√
y

√
y

)(
v′ +

|a|2

y

(
tanh2√y v′ + 4 sinh2√y v′′

))

+

(
|t∗|2 cosh

√
y + |a|2

sinh
√
y

√
y

)
1

y

(
tanh2√y v′ + 4 sinh2√y v′′

)]

= ai
|t∗| cosh2√y

y

((
1−

tanh
√
y

√
y

+ tanh2√y
)
v′ + 4 sinh2√y v′′

)
for i = 1, . . . , q. Since t∗ is nonzero by assumption, |t∗| and y are positive, which further
implies that v′, v′′ > 0 [Ste93, Prop. 6] and 1− tanh

√
y√

y + tanh2√y > 0. Consequently,
ωSt(Ei, Fq+1) vanishes if and only if ai = 0. In other words, we have ωSt(Ei, Fq+1) = 0
for all i = 1, . . . , q if and only if µ(u∗) =

∑q
l=1 al(u

∗)e∗l = 0. (As u∗ ∈ L was arbitrary,
µ = 0 ∈ Ω1(L) is a necessary condition for N∗L + µ to be Lagrangian. Thus, we could
already conclude this proof by referring to the proof of [KM05, Thm. 3.1], but let us carry
out the few remaining steps for the sake of completeness.)

As µ(u∗) = 0 is a necessary condition, it suffices to do the computations for the other
pairs with the assumption that ai = 0 for i = 1, . . . , q. In that case, the Kähler form ωSt

(4.3) simplifies to

ωSt =
i

2

n∑
j=1

(v′dzj ∧ dz̄j) +
i

2

(
tanh2|t∗| v′ + 4 sinh2|t∗| v′′

)
dzq+1 ∧ dz̄q+1.
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From this, we obtain

ωSt(Fj , ·) = −1

2
v′

sinh|t∗|
|t∗|

(dzj + dz̄j)

for j = q + 2, . . . , n, which implies that ωSt(Fj , Ei) = ωSt(Fj , Fk) = 0 for all i = 1, . . . , q
and k = q + 1, . . . , n. Lastly, we compute

ωSt(Ei, Ek) =
i

2
v′
(

cosh|t∗|(dz̄i − dzi)(Ek) + i
sinh|t∗|
|t∗|

q∑
j=1

Aν̂ij(dz̄j + dzj)(Ek)

)

=
i

2
u′

(
cosh|t∗|

(
−2i

sinh|t∗|
|t∗|

Aν̂ki

)
+ i

sinh|t∗|
|t∗|

q∑
j=1

Aν̂ij
(
2δjk cosh|t∗|

))

= u′
sinh|t∗| cosh|t∗|

|t∗|
(Aν̂ki −Aν̂ik) = 0

for i, k = 1, . . . , q. Consequently, ωSt vanishes on Tz∗Xµ if and only if µ(u∗) = 0. Due to
the smoothness of Φ,Ψ and ω, this equivalence holds not only for every z = (Ψ ◦ Φ)(u, t)
with t 6= 0, but also for arbitrary (u, t) ∈ Xµ. Thus, Xµ is Lagrangian in T ∗Sn if and only
if µ = 0.

Unfortunately, Theorem 4.1 implies that twisting N∗L by 1-forms on L does not provide
any new examples. In fact, all possible special Lagrangians constructed in this way were
already described in Theorem 3.7. This shows that special Lagrangians of the form N∗L
in T ∗Sn are way more rigid than those in T ∗Rn. Nevertheless, let us capture this result in
the following corollary.

Corollary 4.2. The submanifold N∗L+ µ is special Lagrangian in T ∗Sn if and only if Lq

is austere in Sn and µ = 0.

4.2. (Co-)associative submanifolds of Λ2
−(T ∗X) with the Bryant–Salamon

metric for X4 = S4,CP2

Next, we discuss Question 3.13. Let L2 ⊂ X4 = S4,CP2 be an oriented immersed
submanifold, and η ∈ Γ(E) and σ ∈ Γ(F ) be sections of the bundle E = span{f1} and its
orthogonal complement F = E⊥

loc
= span{f2, f3} in Λ2

−(T ∗X)|L. As before, S4 and CP2

are equipped with the standard round metric and the Fubini-Study metric, respectively,
and we endow M7 = Λ2

−(T ∗X4) with the Bryant–Salamon metric of holonomy G2 (see
Theorem 3.11). We examine the spaces XE

σ (“E + σ”) and XF
η (“η + F”) obtained by

affinely translating each fiber Ex and Fx by σx ∈ Fx and ηx ∈ Ex, respectively. Our goal is
to determine necessary and sufficient conditions on L, σ and η so that E+σ and η+F are
associative and coassociative in M7 = Λ2

−(T ∗X4). We begin by establishing some needed
formulas and constructing a holomorphic structure on F .
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Lemma 4.3. Let ∇ denote the connection on Λ2
−(T ∗X)|L induced by the Levi-Civita

connection on X4. Using normal coordinates (3.1) at any u∗ ∈ L yields

∇eif1 = (A4
i1 −A3

i2)f
2 + (−A3

i1 −A4
i2)f

3,

∇eif2 = (A3
i2 −A4

i1)f
1,

∇eif3 = (A4
i2 +A3

i1)f
1

at that point for i = 1, 2.

Proof. All three expressions are obtained by using the Leibniz rule for the covariant
derivative and then applying the identities (3.2) [IKM05, Proof of Prop. 4.1.1]. We
demonstrate this for the second one, the other two are derived similarly. We compute

∇eif2 = ∇ei(e1 ∧ ν3 − ν4 ∧ e2)
= (∇eie1) ∧ ν3 + e1 ∧ (∇eiν3)− (∇eiν4) ∧ e2 − ν4 ∧ (∇eie2)
= (−A3

i1ν
3 −A4

i1ν
4) ∧ ν3 + e1 ∧ (A3

i1e
1 +A3

i2e
2)

− (A4
i1e

1 +A4
i2e

2) ∧ e2 − ν4 ∧ (−A3
i2ν

3 −A4
i2ν

4)

= (A3
i2 −A4

i1)(e
1 ∧ e2 − ν3 ∧ ν4)

= (A3
i2 −A4

i1)f
1

at u∗ for i = 1, 2.

With L being a 2-dimensional oriented immersed submanifold of X4, the tangent bundle
TL

loc
= span{e1, e2} and normal bundle NL

loc
= span{ν3, ν4} can be endowed with natural

almost complex structures JT and JN , locally given by JT e1 = e2, JT e2 = −e1 and
JNν3 = ν4, JNν4 = −ν3. As TL and NL are of rank 2, their Nijenhuis tensors vanish
automatically, turning JT and JN into complex structures. Let gL denote the metric on L
induced by the metric on X. It is easy to check that it satisfies gL(·, ·) = gL(JT ·, JT ·),
which allows us to view L as a complex manifold of dimension 1 with Hermitian metric gL.
Furthermore, all k-forms on L are trivial for k > 3, implying that its associated 2-form
ωL(·, ·) = gL(JT ·, ·) must be closed. Hence, (L, gL, JT , ωL) forms a complex 1-dimensional
Kähler manifold. Similarly, the rank 2 vector bundle F

loc
= span{f2, f3} can be endowed

with a complex structure JF locally given by JF f
2 = f3 and JF f

3 = −f2. This turns {f2}
into a local complex frame for F and, consequently, F into a rank 1 complex vector bundle
over L.

The Levi-Civita connection on X induces connections ∇ on Λ2
−(T ∗X)|L and∇F = πF ◦∇

on F , where πF : Λ2
−(T ∗X)|L = E ⊕ F → F stands for the projection onto F . The

preceding lemma combined with the fact that f1 is orthogonal to F then shows that
∇Feif

k = πF (∇eifk) = 0 for i = 1, 2 and k = 2, 3 at any u∗ ∈ L, using normal coordinates
at that point. From this, we deduce that (∇FeiJF )(fk) = ∇Fei(JF f

k) − JF (∇Feif
k) = 0,

which generalizes to ∇FJF = 0 as the latter is a tensor. Consequently, the connec-
tion ∇F is complex linear with respect to JF , which allows us to define the operator
∂̄F

def
= (∇F )0,1 : Ωr,s(F )→ Ωr,s+1(F ). As ∂̄F satisfies the Leibniz rule [Huy05, p. 176], it

defines a pseudo-holomorphic structure on F . However, since L has complex dimension 1,
there exist no (0, 2)-forms on F . Thus, ∂̄2F : Ωr,s(F ) → Ωr,s+2(F ) = {0} must be trivial,
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implying that ∂̄F = (∇F )0,1 actually defines a holomorphic structure on F , turning it into a
holomorphic vector bundle. Then a section σ ∈ Γ(F ) is holomorphic if ∂̄Fσ = (∇F )0,1σ = 0.
See [Joy07, Ch. 5] and [Mor07, Ch. 9] for background on Kähler manifolds and holomorphic
vector bundles.

Theorem 4.4. Let X4 = S4 or CP2. Then:

1. The submanifold E + σ is associative in Λ2
−(T ∗X4) if and only if L2 is minimal in

X4 and σ ∈ Γ(F ) is holomorphic.

2. The submanifold η + F is coassociative in Λ2
−(T ∗X4) if and only if L2 is negative

superminimal in X4 and η ∈ Γ(E) is parallel with respect to the induced connection
∇E on E from the Levi-Civita connection on X4.

Remark 4.5. Note that the conditions on L, σ and η are the same as in the case of R4 in
[KL12] (see Theorem 3.9).

We split the proof into two parts with the purpose of making it easier to follow.

Proof of 1. The immersion of E + σ into M7 = Λ2
−(T ∗X4), Φ : XE

σ →M , is locally given
by

Φ : (u, t1) 7→
(
x(u), t1f

1(u) + σ(u)
)

=
(
x(u), t1f

1(u) + a(u)f2(u) + b(u)f3(u)
)
,

where u = (u1, u2) and t1 are the coordinates on L and on the fiber, respectively,
x = (x1, . . . , x4) is the local immersion of L into X4, and a and b are the coordinates
of σ with respect to the local trivialization F

loc
= span{f2, f3}. Then the tangent space to

XE
σ at some fixed point ω∗ = Φ(u∗, t∗1) ∈ M is spanned by E1 = Φ∗(∂u1), E2 = Φ∗(∂u2)

and F1 = Φ∗(∂t1), omitting the dependence on (u∗, t∗). By Lemma 4.3, we have

Vertω∗(∇eif1) = Vertω∗
(
(A4

i1 −A3
i2)f

2 + (−A3
i1 −A4

i2)f
3
)

= (A4
i1 −A3

i2)f̌
2 + (−A3

i1 −A4
i2)f̌

3,

Vertω∗(∇eif2) = Vertω∗
(
(A3

i2 −A4
i1)f

1
)

= (A3
i2 −A4

i1)f̌
1,

Vertω∗(∇eif3) = Vertω∗
(
(A4

i2 +A3
i1)f

1
)

= (A4
i2 +A3

i1)f̌
1

for i = 1, 2. Using these formulas, we find that Ei takes the form

Ei = ēi + Vertω∗
(
t∗1∇eif1 +∇ei(af2 + bf3)

)
= ēi + Vertω∗(t

∗
1∇eif1 + a∇eif2 + b∇eif3 + aif

2 + bif
3)

= ēi + t∗1Vertω∗(∇eif1) + aVertω∗(∇eif2) + bVertω∗(∇eif3) + aif̌
2 + bif̌

3

= ēi +Aif̌
1 +Bif̌

2 + Cif̌
3

with

Ai = a(A3
i2 −A4

i1) + b(A4
i2 +A3

i1), Bi = t∗1(A
4
i1 −A3

i2) + ai, Ci = t∗1(−A3
i1 −A4

i2) + bi,

and ai = ∂a
∂ui
, bi = ∂b

∂ui
for i = 1, 2. Lastly, the third basis vector is given by

F1 = Φ∗

(
∂

∂t1

)
= f̌1.
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Next, we determine when E2yE1yF1yψ vanishes (cf. Proposition 2.22(iv)). Using the
formula

ψ = u4(ē1 ∧ ē2 ∧ ν̄3 ∧ ν̄4)− u2v2 f̌2 ∧ f̌3 ∧ (ē1 ∧ ē2 − ν̄3 ∧ ν̄4)
− u2v2 f̌3 ∧ f̌1 ∧ (ē1 ∧ ν̄3 − ν̄4 ∧ ē2)− u2v2 f̌1 ∧ f̌2 ∧ (ē1 ∧ ν̄4 − ē2 ∧ ν̄3)

(see (3.6)), we compute

F1yψ = −u2v2
(
−f̌3 ∧ (ē1 ∧ ν̄3 − ν̄4 ∧ ē2) + f̌2 ∧ (ē1 ∧ ν̄4 − ē2 ∧ ν̄3)

)
,

E1yF1yψ = −u2v2(f̌3 ∧ ν̄3 − f̌2 ∧ ν̄4)
− u2v2

(
−C1(ē

1 ∧ ν̄3 − ν̄4 ∧ ē2) +B1(ē
1 ∧ ν̄4 − ē2 ∧ ν̄3)

)
,

E2yE1yF1yψ = −u2v2(C2ν̄
3 −B2ν̄

4)− u2v2(−C1ν̄
4 −B1ν̄

3)

= −u2v2
(
(−B1 + C2)ν̄

3 + (−B2 − C1)ν̄
4
)
.

Since u, v > 0, E2yE1yF1yψ equals zero if and only if the equations

0 = −B1 + C2 = −t∗1(A4
11 −A3

12)− a1 + t∗1(−A3
12 −A4

22) + b2

= −t∗1(A4
11 +A4

22) + (−a1 + b2) , (4.4)

0 = B2 + C1 = t∗1(A
4
12 −A3

22) + a2 + t∗1(−A3
11 −A4

12) + b1

= −t∗1(A3
11 +A3

22) + (a2 + b1) (4.5)

are satisfied. Given that (u∗, t∗1) ∈ XE
σ was arbitrary, XE

σ is associative in M7 if and only
if (4.4) and (4.5) hold true on all of XE

σ . This is equivalent to the conditions

(I) TrA3 = A3
11 +A3

22 = 0 and TrA4 = A4
11 +A4

22 = 0, or, in other words, L is minimal
in X,

(II) a1 = b2 and a2 = −b1.

It remains to show that (II) is equivalent to σ ∈ Γ(F ) being holomorphic. Recall that σ
is locally given by σ = af2 + bf3 and that it is holomorphic if ∂̄Fσ = (∇F )0,1σ = 0. Since
e1 + ie2 locally trivializes (TL)0,1, this is equivalent to ∇Fe1+ie2σ = 0. We compute

∇Fe1+ie2σ = ∇Fe1σ + JF (∇Fe2σ)

= πF (∇e1σ) + JF
(
πF (∇e2σ)

)
= πF (a∇e1f2 + b∇e1f3 + a1f

2 + b1f
3)

+ JF
(
πF (a∇e2f2 + b∇e2f3 + a2f

2 + b2f
3)
)

= a1f
2 + b1f

3 + JF (a2f
2 + b2f

3)

= (a1 − b2)f2 + (a2 + b1)f
3,

where we used Lemma 4.3 and the fact that f1 is orthogonal to F . Consequently, σ is
holomorphic if and only if (II) holds, which concludes the proof.

We proceed to the proof of the second statement.
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Proof of 2. The immersion of η + F into M , Ψ : XF
η →M , is locally given by

Ψ : (u, t) 7→
(
x(u), t2f

3(u) + t3f
3(u) + η(u)

)
=
(
x(u), t2f

3(u) + t3f
3(u) + γ(u)f1(u)

)
,

where u = (u1, u2) and t = (t2, t3) are the coordinates on L and on the fiber, respectively,
x = (x1, . . . , x4) is the local immersion of L into X4 and γ ∈ C∞(L) is the globally
defined function such that η = γf1. Then the tangent space to Xη at some fixed point
ω∗ = Ψ(u∗, t∗) ∈ M is spanned by E1 = Ψ∗(∂u1), E2 = Ψ∗(∂u2), F2 = Ψ∗(∂t2) and
F3 = Ψ∗(∂t3), omitting the dependence on (u∗, t∗). As in the proof of the first statement,
we use Lemma 4.3 to compute Ei, and we find that

Ei = ēi + Vertω∗
(
t∗2∇eif2 + t∗3∇eif3 +∇ei(γf1)

)
= ēi + t∗2Vertω∗(∇eif2) + t∗3Vertω∗(∇eif3) + γVertω∗(∇eif1) + γif̌

1

= ēi +Aif̌
1 +Bif̌

2 + Cif̌
3

with

Ai = t∗2(A
3
i2 −A4

i1) + t∗3(A
4
i2 +A3

i1) + γi, Bi = γ(A4
i1 −A3

i2), Ci = γ(−A3
i1 −A4

i2),

and γi = ∂γ
∂ui

for i = 1, 2. Furthermore, F2 and F3 are given by

Fj = Ψ∗

(
∂

∂tj

)
= f̌ j , j = 2, 3.

By Proposition 2.23, Xη is coassociative in M if and only if ϕ|Xη = 0. Using the formula

ϕ = v3(f̌1 ∧ f̌2 ∧ f̌3) + u2v f̌1 ∧ (ē1 ∧ ē2 − ν̄3 ∧ ν̄4)
+ u2v f̌2 ∧ (ē1 ∧ ν̄3 − ν̄4 ∧ ē2) + u2v f̌3 ∧ (ē1 ∧ ν̄4 − ē2 ∧ ν̄3)

(see (3.5)), we obtain ϕ(F2, F3, ·) = v3f̌1, which implies ϕ(F2, F3, Ei) = v3Ai for i = 1, 2.
On the other hand,

ϕ(E1, E2, ·) = u2vf̌1 + v3
(
(A1B2 −A2B1)f̌3 + (−A1C2 +A2C1)f̌2 + (B1C2 −B2C1)f̌1

)
− u2v(A2ē

2 +B2ν̄
3 + C2ν̄

4) + u2v(−A1ē
1 +B1ν̄

4 − C1ν̄
3)

=
(
u2v + v3(B1C2 −B2C1)

)
f̌1 + v3(−A1C2 +A2C1)f̌2 + v3(A1B2 −A2B1)f̌3

− u2v
(
A1ē

1 +A2ē
2 + (B2 + C1)ν̄

3 + (−B1 + C2)ν̄
4
)

yields ϕ(E1, E2, F2) = v3(−A1C2 + A2C1) and ϕ(E1, E2, F3) = v3(A1B2 − A2B1). Since
v > 0, we deduce that ϕ vanishes on Tω∗Xη if and only if the conditions

A1 = A2 = 0, −A1C2 +A2C1 = 0 and A1B2 −A2B1 = 0

are satisfied. As the last two follow from the first, this is equivalent to Ai = 0 for i = 1, 2.
Since (u∗, t∗) ∈ Xη was arbitrary, Xη is coassociative in M if and only if Ai(t) =

t2(A3
i2 −A4

i1) + t3(A4
i2 +A3

i1) + γi vanishes at every point (u, t) ∈ Xη for i = 1, 2, omitting
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the dependence on u. Define ν(t) = t2ν3 + t3ν4 and ν⊥(t) = JNν(t) = −t3ν3 + t2ν4. Then
Ai takes the form Ai = Aνi2 −Aν

⊥
i1 + γi for i = 1, 2. From the relations

Ai(λt) = A
λν(t)
i2 −Aλν

⊥(t)
i1 + γi = λ(A

ν(t)
i2 −A

ν⊥(t)
i1 ) + γi,

Ai(λt
⊥) = A

λν(t⊥)
i2 −Aλν

⊥(t⊥)
i1 + γi = λ(A

ν⊥(t)
i2 +A

ν(t)
i1 ) + γi

for (t2, t3)
⊥ = (−t3, t2) and λ ∈ R, we deduce that Ai vanishes on all of Xη if and only if

Aνi2 −Aν
⊥
i1 = 0, Aν

⊥
i2 +Aνi1 = 0 and γi = 0.

Combining these conditions yields

AJNν = Aν
⊥

=

(
Aν
⊥

11 Aν
⊥

12

Aν
⊥

12 Aν
⊥

22

)
=

(
Aν12 Aν22
−Aν11 −Aν12

)
=

(
0 1
−1 0

)(
Aν11 Aν12
Aν12 Aν22

)
= −JTAν

and γ1 = γ2 = 0. Since ν(t) and ν⊥(t) form a local frame for NL whenever t 6= 0, this is
equivalent to L being negative superminimal and γ ∈ C∞(L) being constant.

From Lemma 4.3, we know that ∇eif1 is orthogonal to E. Using this fact, we compute

∇Eeiη = πE(∇eiη) = πE(γif
1 + γ∇eif1) = γif

1

for i = 1, 2, where πE : E ⊕ F → E stands for the projection onto E. This shows that γ is
constant if and only if η is parallel with respect to ∇E . Thus, Xη is coassociative in M if
and only if L is negative superminimal in X and η is parallel with respect to ∇E .

4.3. Cayley submanifolds of S−(S4) with the Bryant–Salamon metric

Lastly, we turn to Question 3.21. Let L2 ⊂ S4 be an oriented immersed submanifold
and ψ ∈ Γ(V−) be a section of the bundle V−

loc
= span{s3, s4}. As before, S4 carries the

standard round metric, while M8 = S−(S4) is endowed with the Bryant–Salamon metric
of holonomy Spin(7) (see Theorem 3.17). We consider the space Xψ (“V+ + ψ”) formed by
affinely translating each fiber (V+)x of the bundle V+

loc
= span{s1, s2} by ψx ∈ (V−)x. Our

goal is to determine necessary and sufficient conditions on L and ψ for V+ +ψ to be Cayley
in S−(S4). We start with a lemma and the construction of a holomorphic structure on V±.

Lemma 4.6 ([KM05, Sec. 4.2]). Let ∇ denote the connection on S−(S4)|L induced by the
Levi-Civita connection on S4. Then ∇eiΓ interchanges V+ and V−, and every local section
s of V± satisfies

∇eis = ∓1

2
jL(∇eiΓ)s

for i = 1, 2.

Proof. To simplify notation, let us focus on a fixed point u∗ ∈ L and define ṡ = (∇eis)|u∗
and Γ̇ = (∇eiΓ)|u∗ . Since Γ2 = −1, we have ΓΓ̇ + Γ̇Γ = 0, which shows that Γ and Γ̇ anti-
commute. Consequently, Γ̇ interchanges V+ and V−. Differentiating the equation Γs = ±jLs
yields Γ̇s+ Γṡ = ±jLṡ, which implies (Γ∓ jL)ṡ = −Γ̇s ∈ V∓. Restricted to V∓, the map

46



Γ∓ jL : V∓ → V∓ acts as ∓2jL, so its inverse is given by (Γ∓ jL)−1 = (∓2jL)−1 = ±1
2jL.

Thus,

ṡ = (Γ∓ jL)−1(Γ∓ jL)ṡ = ∓1

2
jLΓ̇s.

Since u∗ ∈ L was arbitrary, this completes the proof.

As in the previous subsection, L can be viewed as a complex 1-dimensional Kähler
manifold. Additionally, we equip V± with the complex structure J± = −Γ. That is,
J+s1 = −s2, J+s2 = s1 on V+ and J−s3 = −s4, J−s4 = s3 on V−. This turns both V+ and
V− into rank 1 complex vector bundles over L.

The Levi-Civita connection on S4 induces connections ∇ on S−(S4)|L and ∇V± = πV± ◦∇
on V±, where πV± : V+⊕V− → V± denotes the projection onto V±. Let s be a local section
of V± and i ∈ {1, 2}. According to Lemma 4.6, ∇eis is orthogonal to V±, which implies that

∇V±ei s = πV±(∇eis) = 0. From this, we obtain (∇V±ei J±)(s) = ∇V±ei (J±s)− J±(∇V±ei s) = 0,
showing that J± is parallel with respect to ∇V± . Thus, the connection ∇V± is complex
linear with respect to J±. Following the same reasoning as in the previous subsection,
we conclude that V± is a holomorphic vector bundle with holomorphic structure given by
∂̄V± = (∇V±)0,1.

Theorem 4.7. The submanifold V+ + ψ is Cayley in S−(S4) if and only if L2 is minimal
in S4 and ψ ∈ Γ(V−) is holomorphic.

Remark 4.8. Note that the conditions on L and ψ are the same as in the case of R4 in
[KL12] (see Theorem 3.14).

Proof. The immersion of V+ + ψ into M8 = S−(S4), Ψ : Xψ →M , is locally given by

Ψ : (u, t) 7→
(
x(u), t1s1(u) + t2s2(u) + ψ(u)

)
=
(
x(u), t1s1(u) + t2s2(u) + a(u)s3(u) + b(u)s4(u)

)
,

where u = (u1, u2) and t = (t1, t2) are the coordinates on L and on the fiber, respectively,
x = (x1, . . . , x4) is the local immersion of L into S4, and a and b are the coordinates of ψ
with respect to the local trivialization V−

loc
= span{s3, s4}. Then the tangent space to Xψ

at some fixed point s∗ = Ψ(u∗, t∗) ∈M is spanned by Ei = Ψ∗(∂ui) and Fj = Ψ∗(∂tj ) for
i, j = 1, 2, omitting the dependence on (u∗, t∗).

By Lemma 4.6, we have ∇eisk = −1
2jL(∇eiΓ)sk and ∇eisl = 1

2jL(∇eiΓ)sl for k = 1, 2
and l = 3, 4. As we are working with normal coordinates at u∗, we can use (3.2) and (3.10)
to compute

∇eiΓ = γ(∇eie1)γ(e2) + γ(e1)γ(∇eie2)
= γ(−A3

i1ν
3 −A4

i1ν
4)γ(e2) + γ(e1)γ(−A3

i2ν
3 −A4

i2ν
4)

=
1

2

(
−A3

i1γ(ν3 ∧ e2)−A4
i1γ(ν4 ∧ e2)−A3

i2γ(e1 ∧ ν3)−A4
i2γ(e1 ∧ ν4)

)
=

1

4

(
(−A3

i2 −A4
i1)γ(f2) + (A3

i1 −A4
i2)γ(f3)

)
= Bi

1

4
γ(f2) + Ci

1

4
γ(f3),
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where we set Bi = −A3
i2 − A4

i1 and Ci = A3
i1 − A4

i2. Substituting the expressions
s2 = 1

4γ(f1)s1, s3 = 1
4γ(f2)s1 and s4 = 1

4γ(f3)s1 into (∇eiΓ)sk and then applying (3.11)
yields

(∇eiΓ)s1 = Bi
1

4
γ(f2)s1 + Ci

1

4
γ(f3)s1 = Bis3 + Cis4,

(∇eiΓ)s2 = Bi
1

16
γ(f2)γ(f1)s1 + Ci

1

16
γ(f3)γ(f1)s1 = −Bi

1

4
γ(f3)s1 + Ci

1

4
γ(f2)s1

= Cis3 −Bis4,

(∇eiΓ)s3 = Bi
1

16
γ(f2)γ(f2)s1 + Ci

1

16
γ(f3)γ(f2)s1 = −Bis1 − Ci

1

4
γ(f1)s1

= −Bis1 − Cis2,

(∇eiΓ)s4 = Bi
1

16
γ(f2)γ(f3)s1 + Ci

1

16
γ(f3)γ(f3)s1 = Bi

1

4
γ(f1)s1 − Cis1

= −Cis1 +Bis2.

Using these formulas, we find that Ei takes the form

Ei = ēi + Verts∗
(
t∗1∇eis1 + t∗2∇eis2 +∇ei(as3 + bs4)

)
= ēi + Verts∗(ais3 + bis4) + Verts∗(t

∗
1∇eis1 + t∗2∇eis2 + a∇eis3 + b∇eis4)

= ēi + aiš3 + biš4

− 1

2
jLVerts∗

(
t∗1(∇eiΓ)s1 + t∗2(∇eiΓ)s2

)
+

1

2
jLVerts∗

(
a(∇eiΓ)s3 + b(∇eiΓ)s4

)
= ēi + aiš3 + biš4

− 1

2
jLVerts∗

(
(t∗1Bi + t∗2Ci)s3 + (t∗1Ci − t∗2Bi)s4

)
+

1

2
jLVerts∗

(
(−aBi − bCi)s1 + (−aCi + bBi)s2

)
= ēi + aiš3 + biš4

− 1

2
Verts∗

(
(t∗1Ci − t∗2Bi)s3 − (t∗1Bi + t∗2Ci)s4

)
+

1

2
Verts∗

(
−(−aCi + bBi)s1 + (−aBi − bCi)s2

)
= ēi + aiš3 + biš4

+
1

2

(
(aCi − bBi)š1 + (−aBi − bCi)š2 + (−t∗1Ci + t∗2Bi)š3 + (t∗1Bi + t∗2Ci)š4

)
with Bi = −A3

i2 − A4
i1, Ci = A3

i1 − A4
i2 and ai = ∂a

∂ui
, bi = ∂b

∂ui
for i = 1, 2. The other two

basis vectors are given by

Fj = Ψ∗

(
∂

∂tj

)
= šj , j = 1, 2.

By Proposition 2.27, Xψ is Cayley in M8 if and only if η, defined as

η(u, v, w, y) = u[ ∧X(v, w, y)[ + v[ ∧X(w, u, y)[ + w[ ∧X(u, v, y)[ + y[ ∧X(v, u, w)[

+ uyX(v, w, y)yΦ + vyX(w, u, y)yΦ + wyX(u, v, y)yΦ + yyX(v, u, w)yΦ
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for u, v, w, y ∈ TsM, s ∈M , vanishes on Xψ. Using the formulas

Φ = u4ē1ē2ν̄3ν̄4 − u2v2(ω1σ
1 + ω2σ

2 + ω3σ
3) + v4š1š2š3š4

= u4ē1ē2ν̄3ν̄4 − u2v2(ē1ē2 + ν̄3ν̄4)(š1š2 + š3š4)− u2v2(ē1ν̄3 + ν̄4ē2)(š1š3 + š4š2)

− u2v2(ē1ν̄4 + ē2ν̄3)(š1š4 + š2š3) + v4š1š2š3š4

(see (3.12)) and X(u, v, w)[ = wyvyuyΦ (2.16), we compute

E[1 ∧X(E2, F1, F2)
[ + E[2 ∧X(F1, E1, F2)

[ + F [1 ∧X(E1, E2, F2)
[ + F [2 ∧X(E2, E1, F1)

[

= u2v4
(
(a1 + b2)(−ē1š3 − ē2š4 + ν̄3š1 + ν̄4š2) + (a2 − b1)(ē1š4 − ē2š3 + ν̄3š2 − ν̄4š1)

)
+

1

2
u2v4

((
t∗1(−B2 + C1) + t∗2(−B1 − C2)

)
(ē1š3 + ē2š4 − ν̄3š1 − ν̄4š2)

+
(
t∗1(−B1 − C2) + t∗2(B2 − C1)

)
(ē1š4 − ē2š3 + ν̄3š2 − ν̄4š1)

)
and

E1yX(E2, F1, F2)yΦ + E2yX(F1, E1, F2)yΦ + F1yX(E1, E2, F2)yΦ + F2yX(E2, E1, F1)yΦ

= 3u2v4
(
(a1 + b2)(ē

1š3 + ē2š4 − ν̄3š1 − ν̄4š2) + (a2 − b1)(−ē1š4 + ē2š3 − ν̄3š2 + ν̄4š1)
)

+
3

2
u2v4

((
t∗1(B2 − C1) + t∗2(B1 + C2)

)
(ē1š3 + ē2š4 − ν̄3š1 − ν̄4š2)

+
(
t∗1(B1 + C2) + t∗2(−B2 + C1)

)
(ē1š4 − ē2š3 + ν̄3š2 − ν̄4š1)

)
,

which add up to

η(E1, E2, F1, F2)

= 2u2v4
(
(a1 + b2)(ē

1š3 + ē2š4 − ν̄3š1 − ν̄4š2) + (a2 − b1)(−ē1š4 + ē2š3 − ν̄3š2 + ν̄4š1)
)

+ u2v4
((
t∗1(B2 − C1) + t∗2(B1 + C2)

)
(ē1š3 + ē2š4 − ν̄3š1 − ν̄4š2)

+
(
t∗1(B1 + C2) + t∗2(−B2 + C1)

)
(ē1š4 − ē2š3 + ν̄3š2 − ν̄4š1)

)
(see Appendix A for the complete computation). Given that (u∗, t∗) ∈ Xψ was arbitrary,
Xψ is Cayley in M if and only if this expression vanishes on all of Xψ. Since u, v > 0, this
is equivalent to the conditions

(I) a1 + b2 = 0 and a2 − b1 = 0,

(II) B2 − C1 = 0 and B1 + C2 = 0.

Substituting the definitions of Bi and Ci yields

B2 − C1 = (−A3
22 −A4

12)− (A3
11 −A4

12) = −(A3
11 +A3

22) = −TrA3,

B1 + C2 = (−A3
12 −A4

11) + (A3
12 −A4

22)− (A4
11 +A4

22) = −TrA4,

which shows that (II) is equivalent to L being minimal in S4.
It remains to prove that the first condition is fulfilled if and only if ψ ∈ Γ(V−) is

holomorphic, meaning that ∂̄V−ψ = (∇V−)0,1ψ = 0. Since e1 + ie2 locally trivializes
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(TL)0,1, the latter is equivalent to ∇V−e1+ie2ψ = 0. Using the formula ψ = as3 + bs4, we
compute

∇V−e1+ie2ψ = ∇V−e1 ψ + J−(∇V−e2 ψ)

= πV−(∇e1ψ) + J−
(
πV−(∇e2ψ)

)
= πV−(a∇e1s3 + b∇e1s4 + a1s3 + b1s4)

+ J−
(
πV−(a∇e2s3 + b∇e2s4 + a2s3 + b2s4)

)
= a1s3 + b1s4 + J−(a2s3 + b2s4)

= (a1 + b2)s3 + (−a2 + b1)s4,

where the fourth equality follows from Lemma 4.6 and the fact that s1 and s2 are orthogonal
to V−. Consequently, ψ is holomorphic if and only if (I) holds, which completes the proof.

Remark 4.9. In the same way, we obtain an analogous result for χ+ V− with χ ∈ Γ(V+).

50



5. Conclusion

Our findings demonstrate that the constructions of calibrated submanifolds in Euclidean
spaces in [KL12] cannot be entirely extended to the manifolds T ∗Sn, Λ2

−(T ∗X) (X4 =
S4,CP2) and S−(S4) considered in [KM05]. While the results for the two spaces of
exceptional holonomy are in line with the previous findings, the construction in T ∗Sn

does not provide any new examples because the Lagrangian condition already requires the
1-form to vanish. As in [KL12], the (co-)associative and Cayley subbundles constructed in
[KM05] allow deformations destroying the linear structure of the fiber, while the base space
L2 remains of the same type after twisting, namely minimal or negative superminimal.
This implies that the moduli space of calibrated submanifolds near a calibrated subbundle
of this kind not only contains deformations of the base L but also of the fiber. In contrast,
the special Lagrangian bundle construction in T ∗Sn is much more rigid than in the case of
T ∗Rn.

It would also be interesting to study whether there exist other types of deformations
in the above three cases and if we can find similar results for other manifolds of special
holonomy.
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A. Computation of η(E1, E2, F1, F2)

This section provides the calculation of η(E1, E2, F1, F2), which was omitted in Subsec-
tion 4.3. Recall that η is defined as

η(u, v, w, y) = u[ ∧X(v, w, y)[ + v[ ∧X(w, u, y)[ + w[ ∧X(u, v, y)[ + y[ ∧X(v, u, w)[

+ uyX(v, w, y)yΦ + vyX(w, u, y)yΦ + wyX(u, v, y)yΦ + yyX(v, u, w)yΦ

for u, v, w, y ∈ TsM, s ∈ M (see Proposition 2.27), where X(u, v, w)[ = wyvyuyΦ (2.16).
By (3.12), Φ restricted to L is locally given by

Φ = u4ē1ē2ν̄3ν̄4 − u2v2(ω1σ
1 + ω2σ

2 + ω3σ
3) + v4š1š2š3š4

= u4ē1ē2ν̄3ν̄4 − u2v2(ē1ē2 + ν̄3ν̄4)(š1š2 + š3š4)− u2v2(ē1ν̄3 + ν̄4ē2)(š1š3 + š4š2)

− u2v2(ē1ν̄4 + ē2ν̄3)(š1š4 + š2š3) + v4š1š2š3š4.

In Subsection 4.3, we then defined the tangent vectors

Ei = ēi + aiš3 + biš4

+
1

2

(
(aCi − bBi)š1 + (−aBi − bCi)š2 + (−t1Ci + t2Bi)š3 + (t1Bi + t2Ci)š4

)
,

Fj = šj

for i, j = 1, 2, where Bi = −A3
i2 −A4

i1, Ci = A3
i1 −A4

i2 and ai = ∂a
∂ui
, bi = ∂b

∂ui
.

We start by computing the interior product of Φ with each of these vectors:

F1yΦ = −u2v2(ω1š
2 + ω2š

3 + ω3š
4) + v4š2š3š4,

F2yΦ = −u2v2(−ω1š
1 − ω2š

4 + ω3š
3)− v4š1š3š4,

E1yΦ = u4ē2ν̄3ν̄4 − u2v2(ē2σ1 + ν̄3σ2 + ν̄4σ3)

− u2v2a1(ω1š
4 − ω2š

1 − ω3š
2) + v4a1š

1š2š4

− u2v2b1(−ω1š
3 + ω2š

2 − ω3š
1)− v4b1š1š2š3

− 1

2
u2v2

(
(aC1 − bB1)(ω1š

2 + ω2š
3 + ω3š

4)

+ (−aB1 − bC1)(−ω1š
1 − ω2š

4 + ω3š
3)

+ (−t1C1 + t2B1)(ω1š
4 − ω2š

1 − ω3š
2)

+ (t1B1 + t2C1)(−ω1š
3 + ω2š

2 − ω3š
1)
)

+
1

2
v4
(
(aC1 − bB1)š

2š3š4 − (−aB1 − bC1)š
1š3š4

+ (−t1C1 + t2B1)š
1š2š4 − (t1B1 + t2C1)š

1š2š3
)
,

E2yΦ = −u4ē1ν̄3ν̄4 − u2v2(−ē1σ1 − ν̄4σ2 + ν̄3σ3)

− u2v2a2(ω1š
4 − ω2š

1 − ω3š
2) + v4a2š

1š2š4

− u2v2b2(−ω1š
3 + ω2š

2 − ω3š
1)− v4b2š1š2š3
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− 1

2
u2v2

(
(aC2 − bB2)(ω1š

2 + ω2š
3 + ω3š

4)

+ (−aB2 − bC2)(−ω1š
1 − ω2š

4 + ω3š
3)

+ (−t1C2 + t2B2)(ω1š
4 − ω2š

1 − ω3š
2)

+ (t1B2 + t2C2)(−ω1š
3 + ω2š

2 − ω3š
1)
)

+
1

2
v4
(
(aC2 − bB2)š

2š3š4 − (−aB2 − bC2)š
1š3š4

+ (−t1C2 + t2B2)š
1š2š4 − (t1B2 + t2C2)š

1š2š3
)
.

From this, we deduce

F2yF1yΦ = −u2v2ω1 + v4š3š4,

E1yF2yF1yΦ = −u2v2ē2 + v4(a1š
4 − b1š3) +

1

2
v4
(
(−t1C1 + t2B1)š

4 − (t1B1 + t2C1)š
3
)
,

E2yF2yF1yΦ = u2v2ē1 + v4(a2š
4 − b2š3) +

1

2
v4
(
(−t1C2 + t2B2)š

4 − (t1B2 + t2C2)š
3
)

and

E2yE1yΦ

= u4ν̄3ν̄4 + v4(a1b2 − a2b1)š1š2 + u2v2(a2b1 − a1b2)ω1 − u2v2σ1

+ u2v2
(
−a1(−ē1š4 + ν̄4š1 − ν̄3š2) + a2(ē

2š4 − ν̄3š1 − ν̄4š2)
− b1(ē1š3 − ν̄4š2 − ν̄3š1) + b2(−ē2š3 + ν̄3š2 − ν̄4š1)

)
+

1

2
u2v2

(
(aC1 − bB1)(−a2ω2 − b2ω3) + (−aB1 − bC1)(b2ω2 − a2ω3)

+(aC2 − bB2)(a1ω2 + b1ω3) + (−aB2 − bC2)(−b1ω2 + a1ω3)
)

+
1

2
u2v2

(
−a1(t1B2 + t2C2) + a2(t1B1 + t2C1)

+ b1(−t1C2 + t2B2)− b2(−t1C1 + t2B1)
)
ω1

+
1

2
u2v2

(
−(aC1 − bB1)(−ē1š2 − ν̄4š3 + ν̄3š4)− (−aB1 − bC1)(ē

1š1 + ν̄4š4 + ν̄3š3)

+ (aC2 − bB2)(ē
2š2 + ν̄3š3 + ν̄4š4) + (−aB2 − bC2)(−ē2š1 − ν̄3š4 + ν̄4š3)

− (−t1C1 + t2B1)(−ē1š4 + ν̄4š1 − ν̄3š2)− (t1B1 + t2C1)(ē
1š3 − ν̄4š2 − ν̄3š1)

+ (−t1C2 + t2B2)(ē
2š4 − ν̄3š1 − ν̄4š2) + (t1B2 + t2C2)(−ē2š3 + ν̄3š2 − ν̄4š1)

)
− 1

4
u2v2

(
(aC1 − bB1)

(
(−aB2 − bC2)ω1 + (−t1C2 + t2B2)ω2 + (t1B2 + t2C2)ω3

)
+ (−aB1 − bC1)

(
−(aC2 − bB2)ω1 − (t1B2 + t2C2)ω2 + (−t1C2 + t2B2)ω3

)
+ (−t1C1 + t2B1)

(
(t1B2 + t2C2)ω1 − (aC2 − bB2)ω2 − (−aB2 − bC2)ω3

)
+ (t1B1 + t2C1)

(
−(−t1C2 + t2B2)ω1 + (−aB2 − bC2)ω2 − (aC2 − bB2)ω3

))
+

1

2
v4
(
(aC1 − bB1)(−a2š2š4 + b2š

2š3)− (−aB1 − bC1)(−a2š1š4 + b2š
1š3)

+ (aC2 − bB2)(a1š
2š4 − b1š2š3) + (−aB2 − bC2)(−a1š1š4 + b1š

1š3)
)
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+
1

2
v4
(
a1(t1B2 + t2C2)− a2(t1B1 + t2C1)

− b1(−t1C2 + t2B2) + b2(−t1C1 + t2B1)
)
š1š2

+
1

4
v4
(

(aC1 − bB1)
(
(−aB2 − bC2)š

3š4 − (−t1C2 + t2B2)š
2š4 + (t1B2 + t2C2)š

2š3
)

− (−aB1 − bC1)
(
(aC2 − bB2)š

3š4 − (−t1C2 + t2B2)š
1š4 + (t1B2 + t2C2)š

1š3
)

+ (−t1C1 + t2B1)
(
(aC2 − bB2)š

2š4 − (−aB2 − bC2)š
1š4 + (t1B2 + t2C2)š

1š2
)

− (t1B1 + t2C1)
(
(aC2 − bB2)š

2š3 − (−aB2 − bC2)š
1š3 + (−t1C2 + t2B2)š

1š2
))
.

The latter implies

F1yE2yE1yΦ

= v4(a1b2 − a2b1)š2 − u2v2š2 + u2v2
(
(a2 − b1)ν̄3 + (a1 + b2)ν̄

4
)

+
1

2
u2v2

(
(−aB1 − bC1)ē

1 + (−aB2 − bC2)ē
2

+
(
t1(−B1 − C2) + t2(B2 − C1)

)
ν̄3 +

(
t1(B2 − C1) + t2(B2 + C2)

)
ν̄4
)

+
1

2
v4
(
−(−aB1 − bC1)(−a2š4 + b2š

3) + (−aB2 − bC2)(−a1š4 + b1š
3)
)

+
1

2
v4
(
a1(t1B2 + t2C2)− a2(t1B1 + t2C1)

− b1(−t1C2 + t2B2) + b2(−t1C1 + t2B1)
)
š2

+
1

4
v4
(
−(−aB1 − bC1)

(
−(−t1C2 + t2B2)š

4 + (t1B2 + t2C2)š
3
)

+ (−t1C1 + t2B1)
(
−(−aB2 − bC2)š

4 + (t1B2 + t2C2)š
2
)

− (t1B1 + t2C1)
(
−(−aB2 − bC2)š

3 + (−t1C2 + t2B2)š
2
))

and

F2yE2yE1yΦ

= −v4(a1b2 − a2b1)š1 + u2v2š1 + u2v2
(
(−a1 − b2)ν̄3 + (a2 − b1)ν̄4

)
+

1

2
u2v2

(
−(aC1 − bB1)ē

1 − (aC2 − bB2)ē
2

+
(
t1(−B2 + C1) + t2(−B1 − C2)

)
ν̄3 +

(
t1(−B1 − C2) + t2(B2 − C1)

)
ν̄4
)

+
1

2
v4
(
(aC1 − bB1)(−a2š4 + b2š

3) + (aC2 − bB2)(a1š
4 − b1š3)

)
− 1

2
v4
(
a1(t1B2 + t2C2)− a2(t1B1 + t2C1)

− b1(−t1C2 + t2B2) + b2(−t1C1 + t2B1)
)
š1

+
1

4
v4
(

(aC1 − bB1)
(
−(−t1C2 + t2B2)š

4 + (t1B2 + t2C2)š
3
)

+ (−t1C1 + t2B1)
(
(aC2 − bB2)š

4 − (t1B2 + t2C2)š
1
)

− (t1B1 + t2C1)
(
(aC2 − bB2)š

3 − (−t1C2 + t2B2)š
1
))
.
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By (2.16), we obtain the terms of the form X(·, ·, ·)[ in η from the expressions above via

X(E2, F1, F2)
[ = E2yF2yF1yΦ, X(F1, E1, F2)

[ = −E1yF2yF1yΦ,

X(E1, E2, F2)
[ = F2yE2yE1yΦ, X(E2, E1, F1)

[ = −F1yE2yE1yΦ.

Moreover, we have ē[i = gM (·, ēi) = u2gH(πH ·, ēi) = u2ēi, ν̄[i = u2ν̄i and š[i = gM (·, ši) =
v2gH(πV ·, ši) = v2ši, where πH and πV denote the projections of M onto H and V,
respectively (cf. Theorem 3.17). Thus,

E[i = u2ēi + v2(aiš
3 + biš

4)

+
1

2
v2
(
(aCi − bBi)š1 + (−aBi − bCi)š2 + (−t1Ci + t2Bi)š

3 + (t1Bi + t2Ci)š
4
)
,

F [j = v2šj

for i, j = 1, 2. By combining these formulas, we can calculate the first four terms of η:

E[1 ∧X(E2, F1, F2)
[

= v6(a1a2 + b1b2)š
3š4 + u2v4

(
(−a1 − b2)ē1š3 + (a2 − b1)ē1š4

)
+

1

2
u2v4

(
−(aC1 − bB1)ē

1š1 − (−aB1 − bC1)ē
1š2

+
(
t1(−B2 + C1) + t2(−B1 − C2)

)
ē1š3

+
(
t1(−B1 − C2) + t2(B2 − C1)

)
ē1š4

)
+

1

2
v6
(
(aC1 − bB1)(a2š

1š4 − b2š1š3) + (−aB1 − bC1)(a2š
2š4 − b2š2š3)

)
+

1

2
v6
(
a1(−t1C2 + t2B2) + a2(−t1C1 + t2B1)

+ b1(t1B2 + t2C2) + b2(t1B1 + t2C1)
)
š3š4

+
1

4
v6
(

(aC1 − bB1)
(
(−t1C2 + t2B2)š

1š4 − (t1B2 + t2C2)š
1š3
)

+ (−aB1 − bC1)
(
(−t1C2 + t2B2)š

2š4 − (t1B2 + t2C2)š
2š3
)

+
(
(−t1C1 + t2B1)(−t1C2 + t2B2) + (t1B1 + t2C1)(t1B2 + t2C2)

)
š3š4

)
,

E[2 ∧X(F1, E1, F2)
[

= −v6(a1a2 + b1b2)š
3š4 + u2v4

(
(−a2 + b1)ē

2š3 + (−a1 − b2)ē2š4
)

+
1

2
u2v4

(
−(aC2 − bB2)ē

2š1 − (−aB2 − bC2)ē
2š2

+
(
t1(B1 + C2) + t2(−B2 + C1)

)
ē2š3

+
(
t1(−B2 + C1) + t2(−B1 − C2)

)
ē2š4

)
− 1

2
v6
(
(aC2 − bB2)(a1š

1š4 − b1š1š3) + (−aB2 − bC2)(a1š
2š4 − b1š2š3)

)
− 1

2
v6
(
a1(−t1C2 + t2B2) + a2(−t1C1 + t2B1)

+ b1(t1B2 + t2C2) + b2(t1B1 + t2C1)
)
š3š4
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− 1

4
v6
(

(aC2 − bB2)
(
(−t1C1 + t2B1)š

1š4 − (t1B1 + t2C1)š
1š3
)

+ (−aB2 − bC2)
(
(−t1C1 + t2B1)š

2š4 − (t1B1 + t2C1)š
2š3
)

+
(
(−t1C2 + t2B2)(−t1C1 + t2B1) + (t1B2 + t2C2)(t1B1 + t2C1)

)
š3š4

)
,

F [1 ∧X(E1, E2, F2)
[

= −u2v4
(
(−a1 − b2)ν̄3š1 + (a2 − b1)ν̄4š1

)
− 1

2
u2v4

(
−(aC1 − bB1)ē

1š1 − (aC2 − bB2)ē
2š1

+
(
t1(−B2 + C1) + t2(−B1 − C2)

)
ν̄3š1

+
(
t1(−B1 − C2) + t2(B2 − C1)

)
ν̄4š1

)
+

1

2
v6
(
(aC1 − bB1)(−a2š1š4 + b2š

1š3) + (aC2 − bB2)(a1š
1š4 − b1š1š3)

)
+

1

4
v6
(

(aC1 − bB1)
(
−(−t1C2 + t2B2)š

1š4 + (t1B2 + t2C2)š
1š3
)

+ (aC2 − bB2)
(
(−t1C1 + t2B1)š

1š4 − (t1B1 + t2C1)š
1š3
))
,

F [2 ∧X(E2, E1, F1)
[

= u2v4
(
(a2 − b1)ν̄3š2 + (a1 + b2)ν̄

4š2
)

+
1

2
u2v4

(
(−aB1 − bC1)ē

1š2 + (−aB2 − bC2)ē
2š2

+
(
t1(−B1 − C2) + t2(B2 − C1)

)
ν̄3š2

+
(
t1(B2 − C1) + t2(B2 + C2)

)
ν̄4š2

)
− 1

2
v6
(
−(−aB1 − bC1)(−a2š2š4 + b2š

2š3) + (−aB2 − bC2)(−a1š2š4 + b1š
2š3)

)
− 1

4
v6
(
−(−aB1 − bC1)

(
−(−t1C2 + t2B2)š

2š4 + (t1B2 + t2C2)š
2š3
)

+ (−aB2 − bC2)
(
−(−t1C1 + t2B1)š

2š4 + (t1B1 + t2C1)š
2š3
))
.

These expressions add up to

E[1 ∧X(E2, F1, F2)
[ + E[2 ∧X(F1, E1, F2)

[ + F [1 ∧X(E1, E2, F2)
[ + F [2 ∧X(E2, E1, F1)

[

= u2v4
(
(a1 + b2)(−ē1š3 − ē2š4 + ν̄3š1 + ν̄4š2) + (a2 − b1)(ē1š4 − ē2š3 + ν̄3š2 − ν̄4š1)

)
+

1

2
u2v4

((
t1(−B2 + C1) + t2(−B1 − C2)

)
(ē1š3 + ē2š4 − ν̄3š1 − ν̄4š2)

+
(
t1(−B1 − C2) + t2(B2 − C1)

)
(ē1š4 − ē2š3 + ν̄3š2 − ν̄4š1)

)
.

To calculate the remaining four terms, we first need to determine the terms of the form
X(·, ·, ·) in η. Using the identities (ēi)] = u−2ēi, (ν̄i)] = u−2ν̄i and (ši)] = v−2ši, we find

X(E2, F1, F2) = (E2yF2yF1yΦ)]

= v2ē1 + v2(a2š4 − b2š3) +
1

2
v2
(
(−t1C2 + t2B2)š4 − (t1B2 + t2C2)š3

)
,
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−X(F1, E1, F2) = (E1yF2yF1yΦ)]

= −v2ē2 + v2(a1š4 − b1š3) +
1

2
v2
(
(−t1C1 + t2B1)š4 − (t1B1 + t2C1)š3

)
,

and

X(E1, E2, F2) = (F2yE2yE1yΦ)]

= −v2(a1b2 − a2b1)š1 + u2š1 + v2
(
(−a1 − b2)ν̄3 + (a2 − b1)ν̄4

)
+

1

2
v2
(
−(aC1 − bB1)ē1 − (aC2 − bB2)ē2

+
(
t1(−B2 + C1) + t2(−B1 − C2)

)
ν̄3 +

(
t1(−B1 − C2) + t2(B2 − C1)

)
ν̄4

)
+

1

2
v2
(
(aC1 − bB1)(−a2š4 + b2š3) + (aC2 − bB2)(a1š4 − b1š3)

)
− 1

2
v2
(
a1(t1B2 + t2C2)− a2(t1B1 + t2C1)

− b1(−t1C2 + t2B2) + b2(−t1C1 + t2B1)
)
š1

+
1

4
v2
(

(aC1 − bB1)
(
−(−t1C2 + t2B2)š4 + (t1B2 + t2C2)š3

)
+ (−t1C1 + t2B1)

(
(aC2 − bB2)š4 − (t1B2 + t2C2)š1

)
− (t1B1 + t2C1)

(
(aC2 − bB2)š3 − (−t1C2 + t2B2)š1

))
,

−X(E2, E1, F1) = (F1yE2yE1yΦ)]

= v2(a1b2 − a2b1)š2 − u2š2 + v2
(
(a2 − b1)ν̄3 + (a1 + b2)ν̄4

)
+

1

2
v2
(

(−aB1 − bC1)ē1 + (−aB2 − bC2)ē2

+
(
t1(−B1 − C2) + t2(B2 − C1)

)
ν̄3 +

(
t1(B2 − C1) + t2(B2 + C2)

)
ν̄4

)
+

1

2
v2
(
−(−aB1 − bC1)(−a2š4 + b2š3) + (−aB2 − bC2)(−a1š4 + b1š3)

)
+

1

2
v2
(
a1(t1B2 + t2C2)− a2(t1B1 + t2C1)

− b1(−t1C2 + t2B2) + b2(−t1C1 + t2B1)
)
š2

+
1

4
v2
(
−(−aB1 − bC1)

(
−(−t1C2 + t2B2)š4 + (t1B2 + t2C2)š3

)
+ (−t1C1 + t2B1)

(
−(−aB2 − bC2)š4 + (t1B2 + t2C2)š2

)
− (t1B1 + t2C1)

(
−(−aB2 − bC2)š3 + (−t1C2 + t2B2)š2

))
.

Computing the interior product of the 3-forms EiyΦ and FjyΦ (see page 52) with these
vectors yields the desired terms:

− E1yX(E2, F1, F2)yΦ = X(E2, F1, F2)yE1yΦ

= u2v4
(
(−a1 − b2)(ē2š4 − ν̄3š1 − ν̄4š2) + (a2 − b1)(−ē2š3 + ν̄3š2 − ν̄4š1)

)
− u2v4(a1a2 + b1b2)ω1 + v6(a1a2 + b1b2)š

1š2
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− 1

2
u2v4

(
a1(−t1C2 + t2B2) + a2(−t1C1 + t2B1)

+ b1(t1B2 + t2C2) + b2(t1B1 + t2C1)
)
ω1

− 1

2
u2v4

(
(aC1 − bB1)(−b2ω2 + a2ω3) + (−aB1 − bC1)(−a2ω2 − b2ω3)

)
− 1

2
u2v4

(
(aC1 − bB1)(ē

2š2 + ν̄3š3 + ν̄4š4) + (−aB1 − bC1)(−ē2š1 − ν̄3š4 + ν̄4š3)

+
(
t1(B2 − C1) + t2(B1 + C2)

)
(ē2š4 − ν̄3š1 − ν̄4š2)

+
(
t1(B1 + C2) + t2(−B2 + C1)

)
(−ē2š3 + ν̄3š2 − ν̄4š1)

)
− 1

4
u2v4

(
(aC1 − bB1)

(
−(t1B2 + t2C2)ω2 + (−t1C2 + t2B2)ω3

)
+ (−aB1 − bC1)

(
−(−t1C2 + t2B2)ω2 − (t1B2 + t2C2)ω3

)
+
(
(−t1C1 + t2B1)(−t1C2 + t2B2) + (t1B1 + t2C1)(t1B2 + t2C2)

)
ω1

)
+

1

2
v6
(
(aC1 − bB1)(a2š

2š3 + b2š
2š4)− (−aB1 − bC1)(a2š

1š3 + b2š
1š4)

)
+

1

2
v6
(
a1(−t1C2 + t2B2) + a2(−t1C1 + t2B1)

+ b1(t1B2 + t2C2) + b2(t1B1 + t2C1)
)
š1š2

+
1

4
v6
(

(aC1 − bB1)
(
(−t1C2 + t2B2)š

2š3 + (t1B2 + t2C2)š
2š4
)

− (−aB1 − bC1)
(
(−t1C2 + t2B2)š

1š3 + (t1B2 + t2C2)š
1š4
)

+
(
(−t1C1 + t2B1)(−t1C2 + t2B2) + (t1B1 + t2C1)(t1B2 + t2C2)

)
š1š2

)
,

E2yX(F1, E1, F2)yΦ = −X(F1, E1, F2)yE2yΦ

= u2v4
(
(a2 − b1)(−ē1š4 + ν̄4š1 − ν̄3š2) + (a1 + b2)(ē

1š3 − ν̄4š2 − ν̄3š1)
)

− u2v4(a1a2 + b1b1)ω1 + v6(a1a2 + b1b2)š
1š2

− 1

2
u2v4

(
a1(−t1C2 + t2B2) + a2(−t1C1 + t2B1)

+ b1(t1B2 + t2C2) + b2(t1B1 + t2C1)
)
ω1

− 1

2
u2v4

(
(aC2 − bB2)(−b1ω2 + a1ω3) + (−aB2 − bC2)(−a1ω2 − b1ω3)

)
+

1

2
u2v4

(
(aC2 − bB2)(−ē1š2 − ν̄4š3 + ν̄3š4) + (−aB2 − bC2)(ē

1š1 + ν̄4š4 + ν̄3š3)

+
(
t1(−B1 − C2) + t2(B2 − C1)

)
(−ē1š4 + ν̄4š1 − ν̄3š2)

+
(
t1(B2 − C1) + t2(B1 + C2)

)
(ē1š3 − ν̄4š2 − ν̄3š1)

)
− 1

4
u2v4

(
(aC2 − bB2)

(
−(t1B1 + t2C1)ω2 + (−t1C1 + t2B1)ω3

)
+ (−aB2 − bC2)

(
−(−t1C1 + t2B1)ω2 − (t1B1 + t2C1)ω3

)
+
(
(−t1C2 + t2B2)(−t1C1 + t2B1) + (t1B2 + t2C2)(t1B1 + t2C1)

)
ω1

)
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+
1

2
v6
(
(aC2 − bB2)(a1š

2š3 + b1š
2š4)− (−aB2 − bC2)(a1š

1š3 + b1š
1š4)

)
+

1

2
v6
(
a1(−t1C2 + t2B2) + a2(−t1C1 + t2B1)

+ b1(t1B2 + t2C2) + b2(t1B1 + t2C1)
)
š1š2

+
1

4
v6
(

(aC2 − bB2)
(
(−t1C1 + t2B1)š

2š3 + (t1B1 + t2C1)š
2š4
)

− (−aB2 − bC2)
(
(−t1C1 + t2B1)š

1š3 + (t1B1 + t2C1)š
1š4
)

+
(
(−t1C2 + t2B2)(−t1C1 + t2B1) + (t1B2 + t2C2)(t1B1 + t2C1)

)
š1š2

)
,

− F1yX(E1, E2, F2)yΦ = X(E1, E2, F2)yF1yΦ

= −u2v4
(
(−a1 − b2)(ν̄4š2 − ē1š3 − ē2š4) + (a2 − b1)(−ν̄3š2 + ē2š3 − ē1š4)

)
− 1

2
u2v4

(
(aC1 − bB1)(−a2ω3 + b2ω2) + (aC2 − bB2)(a1ω3 − b1ω2)

)
− 1

2
u2v4

(
−(aC1 − bB1)(ē

2š2 + ν̄3š3 + ν̄4š4)− (aC2 − bB2)(−ē1š2 − ν̄4š3 + ν̄3š4)

+
(
t1(−B2 + C1) + t2(−B1 − C2)

)
(ν̄4š2 − ē1š3 − ē2š4)

+
(
t1(−B1 − C2) + t2(B2 − C1)

)
(−ν̄3š2 + ē2š3 − ē1š4)

)
− 1

4
u2v4

(
(aC1 − bB1)

(
−(−t1C2 + t2B2)ω3 + (t1B2 + t2C2)ω2

)
+ (aC2 − bB2)

(
(−t1C1 + t2B1)ω3 − (t1B1 + t2C1)ω2

))
+

1

2
v6
(
(aC1 − bB1)(−a2š2š3 − b2š2š4) + (aC2 − bB2)(a1š

2š3 + b1š
2š4)

)
+

1

4
v6
(

(aC1 − bB1)
(
−(−t1C2 + t2B2)š

2š3 − (t1B2 + t2C2)š
2š4
)

+ (aC2 − bB2)
(
(−t1C1 + t2B1)š

2š3 + (t1B1 + t2C1)š
2š4
))

and

F2yX(E2, E1, F1)yΦ = −X(E2, E1, F1)yF2yΦ

= −u2v4
(
(a2 − b1)(−ν̄4š1 + ē1š4 − ē2š3) + (a1 + b2)(ν̄

3š1 − ē2š4 − ē1š3)
)

− 1

2
u2v4

(
−(−aB1 − bC1)(a2ω2 + b2ω3) + (−aB2 − bC2)(a1ω2 + b1ω3)

)
− 1

2
u2v4

(
(−aB1 − bC1)(−ē2š1 − ν̄3š4 + ν̄4š3) + (−aB2 − bC2)(ē

1š1 + ν̄4š4 + ν̄3š3)

+
(
t1(−B1 − C2) + t2(B2 − C1)

)
(−ν̄4š1 + ē1š4 − ē2š3)

+
(
t1(B2 − C1) + t2(B2 + C2)

)
(ν̄3š1 − ē2š4 − ē1š3)

)
− 1

4
u2v4

(
−(−aB1 − bC1)

(
(−t1C2 + t2B2)ω2 + (t1B2 + t2C2)ω3

)
+ (−t1C1 + t2B1)(−aB2 − bC2)ω2 + (t1B1 + t2C1)(−aB2 − bC2)ω3

)
− 1

2
v6
(
−(−aB1 − bC1)(−a2š1š3 − b2š1š4) + (−aB2 − bC2)(−a1š1š3 − b1š1š4)

)
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− 1

4
v6
(
−(−aB1 − bC1)

(
−(−t1C2 + t2B2)š

1š3 − (t1B2 + t2C2)š
1š4
)

− (−aB2 − bC2)
(
(−t1C1 + t2B1)š

1š3 + (t1B1 + t2C1)š
1š4
))
.

These formulas add up to

E1yX(E2, F1, F2)yΦ + E2yX(F1, E1, F2)yΦ + F1yX(E1, E2, F2)yΦ + F2yX(E2, E1, F1)yΦ

= 3u2v4
(
(a1 + b2)(ē

1š3 + ē2š4 − ν̄3š1 − ν̄4š2) + (a2 − b1)(−ē1š4 + ē2š3 − ν̄3š2 + ν̄4š1)
)

+
3

2
u2v4

((
t1(B2 − C1) + t2(B1 + C2)

)
(ē1š3 + ē2š4 − ν̄3š1 − ν̄4š2)

+
(
t1(B1 + C2) + t2(−B2 + C1)

)
(ē1š4 − ē2š3 + ν̄3š2 − ν̄4š1)

)
.

Finally, we obtain

η(E1, E2, F1, F2)

= 2u2v4
(
(a1 + b2)(ē

1š3 + ē2š4 − ν̄3š1 − ν̄4š2) + (a2 − b1)(−ē1š4 + ē2š3 − ν̄3š2 + ν̄4š1)
)

+ u2v4
((
t1(B2 − C1) + t2(B1 + C2)

)
(ē1š3 + ē2š4 − ν̄3š1 − ν̄4š2)

+
(
t1(B1 + C2) + t2(−B2 + C1)

)
(ē1š4 − ē2š3 + ν̄3š2 − ν̄4š1)

)
.
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B. Spin geometry

This section briefly reviews the basics of spin geometry required to fully understand the
constructions in the negative spinor bundles S−(X) of X4 = R4, S4. We focus on presenting
the main ideas and refer to [Har90, Ch. 9–11], [Wen22, Sec. 50] and [LM89, Ch. 1–2] for
more details.

Let V be an n-dimensional vector space equipped with an inner product 〈·, ·〉, and denote
its tensor algebra by T (V ) =

⊕∞
k=0 V

⊗k. The Clifford algebra Cl(V ) of V is defined as

Cl(V ) = T (V )/I,

where I ⊂ T (V ) is the two-sided ideal generated by {v ⊗ v + 〈v, v〉 | v ∈ V }. We write
x · y = [v ⊗ w] ∈ Cl(V ) for the product of x = [v] and y = [w] ∈ Cl(V ).

As a vector space, Cl(V ) is naturally isomorphic to the exterior algebra Λ∗V =
⊕∞

k=0 ΛkV .
Specifically, after embedding Λ∗V into T (V ) via

v1∧̇ . . . ∧̇vk =
1

k!

∑
σ∈Sk

(−1)|σ|vσ(1) ⊗ · · · ⊗ vσ(k)

for v1, . . . , vk ∈ V , the quotient map Λ∗V ⊂ T (V )→ Cl(V ) = T (V )/I serves as a vector
space isomorphism [Har90, Prop. 9.11]. In particular, the natural maps R = V ⊗0 → Cl(V )
and V = V ⊗1 → Cl(V ) are injective, allowing us to regard R and V as subspaces of Cl(V ).

Under this map, the Clifford product · on Cl(V ) and the wedge product ∧̇ on Λ∗V are
related by

v · w = v∧̇w − vyw

for v ∈ V and w ∈ Λ∗V ∼= Cl(V ) [Har90, Prop. 9.11], which simplifies to

v1 · . . . · vk = v1∧̇ . . . ∧̇vk =
1

k!
v1 ∧ · · · ∧ vk (B.1)

for orthogonal vectors v1, . . . , vk ∈ V . Here, ∧ denotes the wedge product according to the
convention used in this thesis, given by

v1 ∧ · · · ∧ vk =
∑
σ∈Sk

(−1)|σ|vσ(1) ⊗ · · · ⊗ vσ(k)

for v1, . . . , vk ∈ V [Spi99, Ch. 7], [Wen22, Sec. 9].
Through the canonical vector space isomorphism Cl(V ) ∼= Λ∗V , the Clifford algebra

Cl(V ) also inherits the inner product from Λ∗V , which is defined by

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wl〉 =

{
det(〈vi, wj〉), k = l,

0, k 6= l.
(B.2)

Let us now fix an orthonormal basis e1, . . . , en for V . Equivalently, we could have defined
Cl(V ) to be the algebra generated by e1, . . . , en subject to the relations

ei · ej + ej · ei = −2δij . (B.3)
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As a vector space, Cl(V ) is spanned by the elements of the form eδ11 · . . . · eδnn for δi ∈ {0, 1},
which are orthogonal by (B.1) and (B.2). This allows us to split Cl(V ) = Cleven(V ) ⊕
Clodd(V ) into an even and an odd part, given by

Cleven(V ) = span
{
eδ11 · . . . · e

δn
n

∣∣∣ δi ∈ {0, 1}, n∑
i=1

δi ∈ 2Z
}
,

Clodd(V ) = span
{
eδ11 · . . . · e

δn
n

∣∣∣ δi ∈ {0, 1}, n∑
i=1

δi ∈ 2Z + 1
}
.

Within the even part, we find the spin group of V , which is defined as

Spin(V ) = {v1 · . . . · v2N | N ≥ 0, vi ∈ V, ‖vi‖ = 1} ⊂ Cleven(V ).

In fact, Spin(V ) is a Lie group and there exists a natural covering map Φ : Spin(V ) →
SO(V ), h 7→ Adh|V of degree 2, given by the restriction of the adjoint representation

Ad : Spin(V )→ GL(Cl(V )), Adh(y) = h · y · h−1

to V ⊂ Cl(V ) [Wen22, Thm. 50.15].
We refer to λ = e1 · . . . · en ∈ Cl(V ) as the volume element. Using (B.3), we calculate

λ2 = (−1)n(n+1)/2, which equals +1 whenever n ∈ {0, 3} mod 4. For such n, λ induces
a natural splitting of Cl(V ) = Cl+(V )⊕ Cl−(V ) into a self-dual and an anti-self-dual
part, given by its eigenspaces

Cl±(V ) = {y ∈ Cl(V ) | λ · y = ±y}.

Let us now restrict our attention to V = Rn with the standard inner product, and
denote the associated Clifford algebra by Cl(n). Pinor and spinor representations
are irreducible representations of Cl(n) and Cleven(n), respectively. Specifically for n = 4
mod 8, these terms refer to irreducible H-representations

γ : Cl(n) ∼= EndH(P) and ρ± : Cleven±
∼= EndH(S±)

for H-vector spaces P (space of pinors) and S = S+ ⊕ S− (space of (positive and
negative) spinors) [Har90, Def. 11.10, 11.14]. As γ(λ) satisfies γ(λ)2 = γ(λ2) = 1, we
can split P = P+ ⊕ P− into its eigenspaces

P± = {a ∈ P | γ(λ)a = ±a}.

Then the pinor representation takes the form

γ : Cl(n) ∼= EndH(P) = EndH(P+ ⊕ P−) ∼=

(
EndH(P+) HomH(P+,P−)

HomH(P−,P+) EndH(P−)

)
.

Since γ(y) preserves P± for y ∈ Cleven(n) and interchanges them for y ∈ Clodd(n), the
restriction of γ to Cleven(n) yields the irreducible representation

γ|Cleven(n) : Cleven(n) ∼=

(
EndH(P+) 0

0 EndH(P−)

)
∼= EndH(P+)⊕ EndH(P−).
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Due to the relation γ(λ)γ(y) = γ(λ · y) = ±γ(y) for y ∈ Cleven± (n), this leads to the spinor
representation

ρ± = γ|Cleven± (n) : Cleven± (n) ∼= EndH(P±).

Thus, S± = P± and S = P.
From the equality dim Cleven(n) = dim Clodd(n), it follows that

0 = dimH
(
EndH(S+)

)
+ dimH

(
EndH(S−)

)
− dimH

(
HomH(S+,S−)

)
−dimH(HomH(S−,S+))

= (dimH S+)2 + (dimH S−)2 − 2(dimH S+)(dimH S−)

= (dimH S+ − dimH S−)2,

which shows that dimH S+ = dimH S−. Furthermore, we have

Cleven(n) ∼= MN (H)⊕MN (H)

for N = 2n/2−2 [Har90, Cor. 11.8].
Combining all of this in the case of n = 4 and restricting ρ to a representation of Spin(n),

we obtain the pinor and spinor representations

γ : Cl(4) ∼= EndH(S+ ⊕ S−),

ρ = ρ+ ⊕ ρ− : Spin(4) ⊂ Cleven(4) ∼= EndH(S+)⊕ EndH(S−)

with S± ∼= H.
Now let (X4, g) be an oriented Riemannian manifold with spin structure (PSpin,Ψ),

consisting of a principal Spin(4)-bundle PSpin → X and a smooth fiber-preserving 2-fold
covering map Ψ : PSpin → F SO(4)(TX) such that Ψ(ph) = Ψ(p)Φ(h) for all p ∈ PSpin and
h ∈ Spin(4). In other words, PSpin is an equivariant lift of the oriented orthonormal frame
bundle F SO(4)(TX) → X with respect to the double cover Φ : Spin(4) → SO(4). The
spinor bundle of X is defined as

S(X) = PSpin ×ρ S = (PSpin × S)/Spin(4)→ X.

This is a quaternionic vector bundle of rank 2 with a natural Spin(4)-structure and the
same transition functions as PSpin, but with standard fiber S = S+ ⊕ S− ∼= H⊕H. The
bundle S(X) = S+(X)⊕ S−(X) splits into the positive and negative spinor bundles,
which are given by the associated bundles

S±(X4) = PSpin ×ρ± S± = (PSpin × S±)/Spin(4)→ X

with standard fiber S± ∼= H.
The (positive/negative) spinor bundle possesses a canonical connection, which we call

the spin connection. Indeed, on the tangent bundle TX → X, the natural choice is the
Levi-Civita connection. This induces a principal connection on the principal SO(4)-bundle
F SO(4)(TX). Demanding that the parallel transport map on the principal Spin(4)-bundle
PSpin commutes with the double cover Ψ : PSpin → F SO(4)(TX) uniquely determines a
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principal connection on PSpin. Finally, the latter induces Spin(4)-compatible connections
on the associated bundles S(X)→ X and S±(X)→ X.

Next, we introduce the Clifford bundle

Cl(TX) =
⋃
x∈X

Cl(TxX),

whose fiber over x ∈ X is the Clifford algebra of TxX with its inner product gx. Equivalently,
we can define it as the associated bundle

Cl(TX) = PSpin ×Ad Cl(4) = (PSpin × Cl(4))/Spin(4)→ X

with standard fiber Cl(4) (see [Wen22, Sec. 50.5] for more details).
Since the linear map Cl(4)⊗ S → S : y ⊗ s 7→ γ(y)s is Spin(4)-equivariant:

h(y ⊗ s) = (h · y · h−1)⊗ (γ(h)s) 7→ γ(h · y · h−1)(γ(h)s) = γ(h)(γ(y)s) = h(γ(y)s)

for h ∈ Spin(4), y ∈ Cl(4) and s ∈ S, it induces a smooth linear bundle map

Cl(TX)⊗ S(X)→ S(X) : y ⊗ s 7→ y · s,

called Clifford multiplication on S(X). This can be interpreted as a bilinear bundle
map Cl(TX)⊕ S(X)→ S(X) and turns each fiber Sx(X) into a Cl(TxX)-module.

One can check that the spin connection on S(X)→ X is compatible with the Clifford
multiplication on S(X) and the Levi-Civita connection on TX → X in the sense that

∇u(v · s) = (∇uv) · s+ v · ∇us

for all u, v ∈ Γ(TX) and s ∈ Γ(S(X)) [Wen22, Ex. 50.19].
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C. Octonion multiplication table

The octonion multiplication rules are captured in the following table. A cell represents
the product of the element in the corresponding row (on the left) and the element in the
corresponding column (on the right). For example, i · j = k.

· 1 i j k e ie je ke

1 1 i j k e ie je ke

i i -1 k -j ie -e -ke je

j j -k -1 i je ke -e -ie

k k j -i -1 ke -je ie -e

e e -ie -je -ke -1 i j k

ie ie e -ke je -i -1 -k j

je je ke e -ie -j k -1 -i

ke ke -je ie e -k -j i -1
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