het (Mⁿ, g_o) be given. <u>Set</u>ⁿ A Ricci flow ou (Mⁿ, g_o) is a family of metrics (g(t)) tetore) st. $\partial_t g(t) = -2Ric(g(t))$ $g(o) = g_o$. E depends ou Mⁿ and g_o.

Then
$$g(t) = (1-2\lambda t)g_0 \ s = sol^t to (RF)$$

as $\partial_t g(t) = -2\lambda g_0 = -2Ric(g_0)$
 $= -2Ric((1-2\lambda t)g_0)$
 $= -2Ric(g(t)).$

", glt)=0 at
$$t = \frac{1}{2\lambda}$$
.

- If 1>0 then the solutions are phrinking as glt) is shrinking from go. 1=0 static solⁿ 1<0 expanding solⁿ.
- A concrete case is that of (s^n, g_0) , Here $Ric(g_0) = (n-1)g_0 \Longrightarrow g(t) = (1-2(n-1)t)g_0$ is a solⁿ to RP. and the solⁿ exists dill $T = \frac{1}{2(n-1)}$.
- Pictonially, the flow runs by shrinking the sphere until it becomes a point.

Symmetries of RF
*
$$(M_1g(t))_{t\in T}$$
 is RF $\longrightarrow (M, g_{t-to})_{t\in T+to}$
is a RP.
* Panabolically rescaling a RF gives another RF
"time scales vike (distance)"
i.e. if $g(t) \stackrel{*}{\Rightarrow}$ a RF then
 $g(x_1t) = \lambda g(x_1 \stackrel{t}{\Rightarrow}), t \in [0, \lambda T] \stackrel{*}{\Rightarrow} also a RF$
as $\partial_t g(x_1t) = \lambda \cdot \frac{1}{\lambda} \partial_t g(x_1 \stackrel{t}{\Rightarrow}) = -2Ric(g(x_1 \stackrel{t}{x}))_{x=-2Ric}(g)$.
* Siffeomorphism invariance if $\varphi: M \rightarrow M$ is a diffeo.
and $g(t)$ is a RF then so is $\varphi^*g(t)$.

Ricci flow negarded as a heat of n

<u>Pet</u>:- Local coordinates (2) are called hormonic $i \oint \Delta x^i = 0$ $= \Delta x^{i} = g^{j\kappa} (\partial_{j} \partial_{\kappa} - \int_{j\kappa}^{\ell} \partial_{\ell} x^{i} = -g^{j\kappa} \int_{j\kappa}^{\ell} d_{\kappa}$ demmq: - For pEM 3 harmonic coordinates eu some mod. of p. Lemme: - In hermonic coordinates, $-2R_{ij} = \Delta(g_{ij}) + Q_{ij}(g^{-1}, \partial g)$ haplauian a term involuing quadratic of components expressions in metric énume g'and 2g.

* Notation: - For tensors A, B A*B would mean "some linear combination of traces of A & B w/ coefficients that do not depend on A or B". Do various contractions bour tensors whose

preise forms are not important. e.g. 18 A 1/2 B 2007 -n! Alrs BK «> in harmonic coordinates, indeed $\mathcal{D}_{t} \mathcal{D}_{ij} = \Delta(\mathcal{D}_{ij}) + \mathcal{D}_{ij}(\mathcal{Q}_{s}).$ Proof of the lemma :-Recall the formula for Rjk in local coordinates give $-2R_{jk} = -2\left(3q \int_{jk}^{q} - 3j \int_{qk}^{q} + \int_{k}^{r} \int_{qp}^{q} - \int_{qk}^{p} \int_{jp}^{q}\right)$ $= -2\left(\Im\left(\frac{1}{2} \operatorname{g}^{\operatorname{gr}}(\operatorname{g}^{\operatorname{gr}}) \operatorname{g}_{\operatorname{rK}} + \operatorname{g}_{\operatorname{K}} \operatorname{g}_{\operatorname{rj}} - \operatorname{g}_{\operatorname{g}} \operatorname{g}_{\operatorname{K}} \right) \right)$ $-\Im\left(\frac{1}{2}\Im_{kr}\left(\Im_{kr}+\Im_{kga}-\Im_{kd}\right)\right)$ $+ \left(\int_{K}^{P} \left(\int_{QP}^{Q} - \int_{QK}^{P} \int_{QP}^{P} \right) \right)$ $= -\partial_{\mathcal{G}} \left(g^{\mathcal{G}_{\mathcal{R}}} \left(\partial_{j} g_{\mathcal{R}_{\mathcal{K}}} + \partial_{\mathcal{K}} g_{\mathcal{R}_{j}} - \partial_{\mathcal{R}} g_{j\mathcal{K}} \right) \right)$ $+ \Im \left(\Im \Im \left(\Im \Im \Im \operatorname{Kr} + \Im \operatorname{Kg} \operatorname{Kr} - \Im \operatorname{SK} \operatorname{Kr} \right) \right)$ + g-1 * g-1 * gd * gd (ue used the coordinate expression for

 $= g^{qr} \left(-\partial q \partial j \partial_{rK} - \partial q \partial k \partial_{rj} + \partial q \partial r \partial_{jK} \right)$ + ger (2j39 gkr + 2j3kger - 2j3r gke) + 9-1 * 9-1 * 93 * 93 - + - terms cancel in harmonic coordinates on $A(g_{jk}) = g^{mn} \left(\frac{D^2}{\partial z^m \partial x^n} g_{jk} - \prod_{mn}^{n_1} \frac{\partial g_{jk}}{\partial z^m} \right)$. The remaining 3 terms can be coniter en terms of partial derivatives of F*g. e.g. gan (-gagkgri + 7 gigk gar) $= -g^{qr} \partial_{k} (\int_{qr}^{s} g_{sj})$ as -g^{gr} 2_k ([^sgr gsj) $= -gg^{n} \partial_{\kappa} \left(\frac{1}{2} g^{sl} \left(\partial_{q} g_{nl} + \partial_{n} g_{ql} - \partial_{l} g_{qr} \right) \right)$ $= -gg^{n} \partial_{k} \left(\frac{1}{2} \left(\partial_{q} g_{nj} + \partial_{n} g_{qj} - \partial_{j} g_{qn} \right) \right)$ $= -\partial_{dr} \left(\frac{1}{2} \left(\partial_{\kappa} \partial_{\sigma} \partial_{\pi} \right) + \partial_{\kappa} \partial_{\pi} \partial_{\sigma} \partial_{\sigma} \right)$ $= - \frac{1}{2} \kappa_{0}^{2} \delta_{0}^{2} \delta_{1} + \frac{1}{2} \delta_{1}^{2} \delta_{1}^$

and the normalining term
$$g^{q,r}(-\partial_{j}\partial_{n}g_{kq} + \partial_{k}\partial_{j}g_{qn})$$

 $iii (*) = -g^{q,r}\partial_{i}(\Gamma_{q,r}^{s}g_{sk})$
 $\partial_{0} (*)$ becomes
 $-2R_{j,k} = \Delta(g_{j,k}) - \int_{k}^{0}\partial_{k}(\Gamma_{q,r}^{s}g_{sj}) - g^{q,r}\partial_{i}(\Gamma_{q,r}^{s}g_{sk})$
 $+ g^{-1}*g^{-1}*\partial_{j}*\partial_{j}$
The underlined terms are zero size
harmonic coordinates and ∂_{0}
 $-2R_{j,k} = \Delta(g_{j,k}) + g^{-1}*g^{-1}*\partial_{j}*\partial_{j}$
 $Q_{ij}(g^{-1},\partial_{j})$

Ily