so in short

$$\nabla_{x,y}^2 \alpha = \nabla_x \nabla_y \alpha - \nabla_{\nabla_x y} \alpha$$

For ex. in local coordinates $\nabla_i R_{jk} = (\nabla R_c)(\partial_i, \partial_j, \partial_k)$ $= (\nabla_{\partial_i} R_c)(\partial_j, \partial_k)$

Dimibuly ViRjkım = Əi[®]Rjkım - Tij Rpkım - Tik Ripim - T^P_{el} Rjkpm - Tim Rjkep

for a function
$$f$$
, one can show that
 $\nabla_i \nabla_j f = (\nabla \nabla f)(\partial_i, \partial_j)$
 $= \frac{\partial^2 f}{\partial x^i \partial x^j} - \Gamma_{ij}^{k} \frac{\partial f}{\partial x^k}$.

* We denote the m-th order derivature of α by $\nabla^m \alpha = \nabla \cdots \nabla \alpha$ m-times

and its components will be denoted by $\nabla_{i_1} \cdots \nabla_{j_m} \nabla_{i_1} \cdots \hat{v_p} := (\nabla^m \alpha) (2 \cdots 2\pi)^{*} \frac{2}{2\pi i_m} \frac{2}{2\pi i$

How to understand the interated derivatives?
Luppose Tris a tensor and we want to calculate

$$\nabla \nabla T(X,Y,w) = (\nabla X(\langle T \rangle)(Y_1w))$$

 $= \nabla X(\langle T \rangle(Y_1w)) - \langle T \rangle(\nabla X Y,w)$
 $= \nabla X(\langle T \rangle(Y_1w)) - \langle T \rangle(Y_1w) - \langle T \rangle(Y_1w)$
 $= \nabla_X (\langle T \rangle T)(w) - (\nabla \nabla_X T)(w) - \langle T \rangle(T)(\nabla_X w)$
 $= X(\langle T \rangle T)(w) - (\nabla \nabla_X T)(w) - \langle T \rangle(T)(w)$
 $= \langle T X T \rangle T \rangle(w) + \langle T \rangle T \rangle(T \times w) - \langle T \rangle T \rangle(w)$
 $= (\nabla_X T Y T)(w) + \langle T \rangle T \rangle(T \times w) - \langle T \rangle T \rangle(w)$
 $= (\nabla_X T Y T)(w) - (\nabla \nabla_Y T)(w)$
 $= (\nabla_X T Y T)(w) - (\nabla \nabla_Y T)(w)$
 $= (\nabla_X T Y T)(w) - (\nabla \nabla_Y T)(w)$
 $= (\nabla_X T Y T)(w) - (\nabla \nabla_Y T)(w)$
 $and hence the result.$

same thing happens for higher degree tendors as well. $\frac{\sqrt{ie} \text{ Derivature}}{For \quad X, y \in \Gamma(TM)}$ $\frac{\sqrt{x}}{\sqrt{x}} = \frac{\sqrt{y}}{\sqrt{y}}$ $\frac{\sqrt{x}}{\sqrt{y}} = \frac{\sqrt{y}}{\sqrt{y}}$ $\frac{\sqrt{x}}{\sqrt{y}} \in \Gamma(TM) \quad x \cdot t \cdot \frac{\sqrt{y}}{\sqrt{y}} = \frac{\sqrt{y}}{\sqrt{y}} - \frac{\sqrt{x}}{\sqrt{x}}$ $\frac{\sqrt{y}}{\sqrt{y}} = \frac{\sqrt{y}}{\sqrt{y}} - \frac{\sqrt{x}}{\sqrt{x}}$ $\frac{\sqrt{y}}{\sqrt{y}} = \frac{\sqrt{y}}{\sqrt{y}} - \frac{\sqrt{x}}{\sqrt{y}}$ $\frac{\sqrt{y}}{\sqrt{y}} = \frac{\sqrt{y}}{\sqrt{y}} - \frac{\sqrt{y}}{\sqrt{x}}$

une though one doesn't need a metric to define the hie derivative, it is related to the L-C connection wa the formula $(X A)(Y_1, \dots, Y_p, \Theta_1, \dots, \Theta_q)$ $= X(A(Y_1, \dots, Y_p, \Theta_1, \dots, \Theta_q))$ $-\sum_{1 \le 1 \le p} A(Y_1, \dots, Y_p, \Theta_1, \dots, Y_p, \Theta_1, \dots, \Theta_q)$ $1 \le 1 \le p$ $-\sum_{1 \le q_1} A(Y_1, \dots, Y_p, \Theta_1, \dots, Y_n, \Theta_1, \dots, \Theta_q)$ $1 \le j \le q_1$

In particular, when
$$A = g$$
 then
 $(d \times g)(Y_1 z) = g(\nabla_Y \times_1 z) + g(Y_1 \nabla_z \times)$
whose expression we coordinates gives
 $(X \cdot g)_{ii} = \nabla_i X_i + \nabla_i X_i$.
If $X = \nabla f$ for $f \in C^{\alpha}(M)$ then
 $(d \times g)_{ij} = (d \nabla_g g)_{ij} = \nabla_i \nabla_j f + \nabla_j \nabla_i f$
 $= 2\nabla_i \nabla_j f$.
 $f \times v \cdot f \cdot \nabla_i^2 Z(X \cdot Y) - \nabla_i^2 Z(Y \cdot X) = \mathcal{R}(X \cdot Y) Z$
 $\mathcal{R}_{ici} \underline{G}_{dentrified} = D \nabla_i \nabla_j Z^K - \nabla_j \nabla_i f Z^K = \mathcal{R}_{ijm} K^K Z^K$
we have
 $(\nabla_i \nabla_j - \nabla_j \nabla_i) \cup_{\mathcal{R}_1, \dots, \mathcal{R}_k} = -\sum_{l=1}^{\infty} \mathcal{R}_{ijk} K^{\alpha} \otimes_{\mathcal{R}_1 \dots \mathcal{R}_{k-1}} m^{\beta} R_{k+1} \dots R_k$

So for a 1-form d, $(\nabla_i \nabla_j - \nabla_j \nabla_i) dR = -R_{ijkl} dl$ or for a 2-densor B $\nabla_i \nabla_j B_{Rl} - \nabla_j \nabla_i B_{Rl} = -R_{ijkm} B_{ml} - R_{ijlm} B_{km}.$ The divergence of a (p_{10}) -tensor is $(d_{11}(\alpha))_{i_{1}\cdots i_{p-1}} = g^{i_{k}} \nabla_{j} \alpha_{ki_{1}\cdots i_{p-1}}$ $= \nabla_{j} \alpha'_{ji_{1}\cdots i_{p-1}}$ for 1-forme α , div α is a function, $d_{11}\alpha = \nabla_{i} \alpha^{i_{1}}$.

Laplacian Laplacian Δ on functions \mathcal{B} div (grad) i.e. $\Delta = \operatorname{div} \nabla = g^{ij} \nabla_i \nabla_j$ $= g^{ij} \left(\frac{\partial^2}{\partial x^i \partial x^j} - \Gamma_{ij}^{ik} \frac{\partial}{\partial x^k} \right)$

For tensors, again

$$\Delta = \operatorname{div}(\operatorname{grad}) = \operatorname{traceg} \nabla^2$$

 $= \operatorname{giv} \nabla_i \nabla_i$

Exercise: - Prove the Bochner formula for $1\nabla f|^2$ i.e. $\forall f \in C^{\infty}(M)$ $\Delta |\nabla f|^2 = 2|\nabla \nabla f|^2 + 2R_{ij} \cdot \nabla_i f \nabla_j f + 2\nabla_i f \nabla_i (\Delta f)$ Conclude that is $Rc \ge 0$, $\Delta f \equiv 0$ and $|\nabla f| = 1$ there $\nabla f \approx parallel$.

We also have the divergence theorem and integratione by parts formula. Let M" be a elosed manifold and u, v \in C^o(M) and X \in F(PM). There S div X vol = 0 omcl so Sau vol = 0 $\int U \Delta V vol = \int V \Delta U vol$ (Integration ky M M pants). note:- fdiv (vgradu) = STi(vTiu)vol = S (TV, JU) vol + SVAU vol JVAU = - S (TVITU) vol =D = Suauval. and so on.