Symmetries of ^R

 $R(x,y,z,w):=q(R(x,y)z,w)$ I 4,0) tensor obtained from (3,1) K by musical isomorphisms $R(a_i, a_j)$ $a_R = R_{ijk}^2$ R (a_i, a_j, a_k, a_m) = R_j km $\begin{vmatrix} R_{ijkm} = R_{ijk}^{\prime} g_{km} \end{vmatrix}$

 $\sqrt{\frac{1}{100}}$? a) $R(x,y,z,w) = -R(y,x,z,w)$ b) $R(X,Y,Z,\omega) = -R(X,Y,\omega,\mathbb{Z})$ c) $R(x_1 y_1 z, \omega) + R(y_1 z, x, \omega) + R(z, x, y, \omega)$

O

d) $R(x,y,z,\omega) = R(z,\omega,x,y)$.

a) is always true and w/ b) allows us to see KEI (NTMONT i.e, as a symmetric bilinear forms on the space of 2 forms

b) follows from metric compabibility:
$$
7g=0
$$

c) is true for any torsion free connection
on 971 . It is called the First Bianchi

identity d follows from ^a b and ^o Proofs ^o ^a done ^b since Ig ⁰ ⁰ Y g ^z ^z 29 Ty ² ^Z ^X ^Y g ^z ^z ² ^X ^g Ty ²¹² 2g Ty Ty ² ² In localcoordinates theseread as ¹ Rijial Rjital ² Rijk Rijek ³ Rijk Rjkie Raije ⁰ ⁴ Rijk Rklij Exercise Prone ^c using local coordinates

$$
+ 2 g \left(\nabla_{\mathbf{y}} \mathbf{z} \, , \nabla_{\mathbf{x}} \mathbf{z} \right)
$$

$$
y(x(g(z,z))) = 2g(\nabla_{y}z, \nabla_{x}z) + 2g(z, \nabla_{y}z, z) - \circled{2}
$$

 $[xxJ(g(z,z)) = 2g(z, \nabla_{[x,y]}z) - 1g(z)]$

\bigcirc \bullet \emptyset - \circledcirc

 $X (Y (Z (Z, Z))) = Y (X (Z (Z, Z))) = [X Y] (Q (Z, Z))$ $D = 0$ and $XY[2]^2 - YX[3]^2 = 0$ $\frac{1}{2}$ $\frac{1}{2}$ $Z'R(x,Y,Z,z)=0$ R(Xiy, Z+wiz+w) = 0 $=D$ R (XIY, ZIZ)
+R (XIY, ZIW) => polarize to get (b). $+R(X,Y,W)$ $R(X|Y|W|G) > 0$ c) Want to show that $R(x,y)z + R(y,z)x + R(z,x)y = 0$ expand and use torsion free and use Jacobi identity for ['s].

 $\frac{0.4}{0.204}$: we prove that $R(x,y)z + R(y,z)x + R(z,x)y = 0.$
This expression is thes expression is $x\sqrt[3]{2}-\sqrt[3]{2}x^{2}+\sqrt[3]{2}x-\sqrt{2}x^{3}x+\sqrt{2}x^{2}x^{3}-\sqrt{2}x^{2}x^{2}$ $V = \nabla_{[x,y]}Z - \nabla_{[y,z]}X - \nabla_{[z,x]}Z$ we manipulate this as $\nabla_{\mathsf{X}}\left(\nabla_{\mathsf{Y}}z-\nabla_{\mathsf{Z}}y\right)+\nabla_{\mathsf{Y}}\left(\nabla_{\mathsf{Z}}\mathsf{X}-\nabla_{\mathsf{X}}z\right)+\nabla_{\mathsf{Z}}\left(\nabla_{\mathsf{X}}y-\nabla_{\mathsf{Y}}\mathsf{X}\right)$ $- \nabla_{[x,y]} z - \nabla_{[y,z]} x - \nabla_{[z,x]} y$ $By Isation-free nlos of ∇ .$ $Y_1 Z J$) + Y_2 Z , $xJ + \nabla_{Z}[x \vee J - \nabla_{X}x]$ $-Trzx3y$ now, notice that $[X_1^T Y_1^T Z] = \nabla_X [Y_1 Z] - \nabla_Y Y_1 Z]^X$ and so on
=> we get we get X , [Y,Z]] + [Y, [Z,X]]+ [Z,LX,Y] / = C By the Jacobi identity.

Jacobi identify for [3.3].
\nd) White (denify 0) *lie* 4 *ugug*.
\nSection 2.2.2
\nSection 3.2.3.3
\nCriton
$$
X_p, Y_p \in T_pM
$$

\n
$$
|X_p \wedge Y_p|_{\partial_p}^2 = |X_p|_{\partial_p}^2 |Y_p|_{\partial_p}^2 - \partial_p (X_p, Y_p)^2
$$
\n
$$
|X \wedge Y|_{\partial_p}^2 = |X|^2 |Y|^2 - \langle X, Y \rangle
$$
\n
$$
|X \wedge Y|_{\partial_p}^2 = |X|^2 |Y|^2 - \langle X, Y \rangle
$$
\n
$$
|X = \int_{\partial_p}^{\partial_p} f(x_p, Y_p) \wedge \int_{\partial_p}^{\partial_p} f(x_p, Y_p) \w
$$

curvature Kg (Lp) of (m,g) at p in

$$
L_{p} \text{ direction}^{n} \text{ by}
$$
\n
$$
K_{p}(L_{p}) = R(X_{p}, Y_{p}, Y_{p}, X_{p})
$$
\n
$$
|X_{p} \wedge Y_{p}|^{2}
$$
\n
$$
\frac{1}{p} \text{ or } \text{or } \text{or } X_{p}, Y_{p} \text{ of } L_{p}.
$$
\n
$$
(\text{denom. not zero on } X_{p}, Y_{p} \text{ are basis}).
$$
\n
$$
i \text{ if } \overline{X} = \alpha X + \text{b} Y
$$
\n
$$
\overline{Y} = \alpha X + \text{d} Y
$$

$$
\tilde{\chi} \wedge \tilde{\chi} = (ad - bc) \chi \wedge \chi
$$

$$
\frac{R(\tilde{x}, \tilde{y}, \tilde{y}, \tilde{x})}{|\tilde{x} \wedge \tilde{y}|^{2}} = \frac{R(x_{1}y_{1}y_{1}x)}{|x \wedge y|^{2}}
$$
\n
$$
|\tilde{y} \wedge \tilde{y}|^{2} \qquad |x \wedge y|^{2}
$$
\n
$$
|x - y| \qquad \text{sechinal curvature is just a smooth}
$$

function on M

demma: The sectional curvature determines the Riemann aurvature and vice-versa. Precisely, suppose $V^{n}(n \geq 2)$ is a \mathbb{R} -inner productspace and ^R andR be two trilinear $maps$ s.t. $\langle R(x,y,z), w \rangle$ and $\langle \widetilde{R}(x,y,z), w \rangle$ are skew in ^X ^Y skew in ^Y ² and satisfy 1st Bianchi identity.

d

Let
$$
XY \in V
$$
 be linearly *ibependent*.
Let $U = span\{X:Y\}$
Define $K(v) = \frac{\langle R(X,Y,Y),X \rangle}{\|X \cap Y\|^2}$

$$
\widetilde{K}(\sigma) = \langle \widehat{R}(x_1y_1y_1)x_1 \rangle
$$

$$
14 K2K Y \sigma \leq U
$$
 then $R2\widetilde{R}$.

\n Lemma 1.11
\n
$$
\text{dim } \mathbb{V} \geq 2
$$
 \n and \n \mathbb{R} \n and \n \mathbb{R} \n $\text{log trilinear maps}$ \n

\n\n $\mathbb{V} \times \mathbb{V} \times \mathbb{V} \to \mathbb{V}$ \n $\rightarrow \text{adiofying}$ \n

$$
\langle R(x_1y_1z), w \rangle = (x_1y_1z,w)
$$

 $\langle \overline{R}(x_1y_1z), w \rangle = (x_1y_1z_1w)^2$

have the following **symmetries** :-
\n
$$
(x,y,z,w) = -(y,x,z,w) = -(x,y,w,z)
$$
\n
$$
= (z,w,x,y)
$$

and $(X_1 Y, Z, \omega) + (Y, Z, X, \omega) + (Z, X, Y, \omega) = 0$

Some for
$$
\sim
$$
.

\nLet X, y be *linearly independent*. Let $\sigma = \text{span}\{x, y\}$

\nDefine $K(\sigma) = \frac{(x, y, y, x)}{|x \wedge y|^2}$

$$
\widetilde{k}(\sigma) = \frac{(x_1y_1y_2)^2}{|x_1y_1|^2}
$$

 $if \quad \widehat{K}(\Gamma) = K(\Gamma) \quad \forall$ 2-dimensional subspace $\sigma \in \sigma$ then $\widetilde{R} = \widetilde{R}$.

 \mathcal{S}_S SI \mathcal{S}_S , where \mathcal{S}_S

Proof	By hypo.	$(x \cdot y, y, x) = (x \cdot y, y, x)$
1	$(x \cdot y, y, y)$	
1	$(x \cdot y, y, z)$	
1	$(x \cdot y, z, z, x + y) = (x \cdot y, z, z, x + y)$	
2	$(x, z, z, y) + (y, z, z, x) = (x, z, z, y)$	
3	(x, z, z, y)	
4	(y, z, z, x)	

$$
\Rightarrow Z(X, Z, Z, Y) = 2(X, Z, Z, Y)
$$
\nBy symmetry
\n
$$
= D \quad (X, Z, Z, Y) = (x, Z, Z, Y)^{\sim}
$$
\n
$$
= D \quad (X, Z, Z, Y) = (x, Z, Z, Y)^{\sim}
$$
\n
$$
= D \quad (X, Z, Z, Y) = (x, Z, Z, Y) = (x, Z, Z) + (x, Z, Z, Y)
$$

$$
=0 \left(X, Z, \omega, y\right) - (x, z, \omega, y)^{2} =
$$

-(x, \omega, z, y) + (x, \omega, z, y)
= (w, x, z, y) - (w, x, z, y)²

$$
\Rightarrow \sim \text{ is invariant whose cyclic permutation} \\ \times \rightarrow Z \rightarrow \text{ with } X
$$
\n
$$
=0 \quad \sum (X, Z, \omega, Y) - (X, Z, \omega, Y)^{2}
$$

$$
x_1y_1z = 3(x_1z_1\omega_1y) - 3(x_1z_1\omega_2y)
$$

 $\overline{\omega}$

$$
=D \quad (A \cdot B \cdot \omega) = (X \cdot B \cdot \omega) \cdot \omega
$$

Let (M₁₉) be Riemannion and R be the what does $\nabla_i R_{jklm}$ mean?
 $\nabla_i R_{jklm} = \left(\frac{\nabla s}{2a}R_m\right) \left(\vartheta_j \partial_k \partial_k \partial_m\right) = \frac{\partial}{\partial x^i} R_{jklm} - \int_{ij}^{b} R_{jklm} - \int_{ik}^{b} R_{jklm}$

$$
-\int_{12}^{12}R_{jkgmn} - \int_{1m}^{12}R_{jkgpn}
$$
\n
\nRiemannian (4.10) $\tan\theta$ or 3. Then
\n
$$
(\nabla_{UR})(X,Y,W,W) + (\nabla_{UR})(X,Y,W,W)
$$
\n
$$
+\left(\nabla_{W}R\right)(X,Y,W) = 0
$$
\n
\nThis is a clumidad thick for such calculations for terms. To prove all
\n $X:3.4.7.1.0$ are basic themselves to this
\n $X:3.4.7.1.0$ are basic themselves to this
\nthe same point in the following problem.
\n $\int_{0}^{3}\frac{\partial}{\partial x^{1}} \cdot \frac{\partial}{\partial x^{2}} \left\{ \int_{0}^{12} \sin(\theta) \cdot \frac{\partial}{\partial x^{1}} \cdot \$

het X, Y, V, V, W be G; G; G, G, Ge, Pm

now

rela

$$
(\nabla_{\mathsf{U}}R)(X_{1}Y_{1}V_{1}W_{2}) = \mathcal{U}(R(X_{1}Y_{1}V_{1}W_{2}))
$$

$$
-R(\nabla_{u}X,Y,V,w)
$$

- ... - R(x,y,v, $\nabla_{u}w$)

But ∇_{u} x ,..., ∇_{u} $w = 0$ at p in normal coordinates

$$
=0
$$
 at ϕ , $(\nabla_{u}R)(x \cdot y, v, \omega) = U(R(x \cdot y, v, \omega))$
now

$$
U(R(x,y,v,w)) = U(g(R(x,y)v,w))
$$

$$
= \bigvee \big(\oint \big(\nabla_x \nabla_y V - \nabla_y \nabla_x V - \nabla_{\mathcal{X} \setminus \mathcal{Y}} V \circ \omega \big) \big) = 0 as coordinatewhere
$$

$$
\begin{aligned}\n\text{mehric compatible} & \text{Im}_{y} \\
&= g\left(\nabla_{u}\nabla_{x}\nabla_{y}V, \omega\right) - g\left(\nabla_{u}\nabla_{y}\nabla_{x}V, \omega\right) \\
&- g\left(\nabla_{x}\nabla_{y}V - \nabla_{y}\nabla_{x}V, \nabla_{u}W\right) \\
&= & \text{for all } y\n\end{aligned}
$$

 $= D (V_{U}R)(X, Y_{1}V_{1}w)(p) = U (R(X, Y, V, W))(p)$

$=U(R(v,w,xv),w)(p)$

$$
= g(\nabla_{u} \nabla_{v} \nabla_{w} X, y) (\rho)
$$

$$
- g(\nabla_{u} \nabla_{w} \nabla_{v} X, y) (\rho)
$$

now cyclically permute ^U ^V and ^W and then add to get the 2nd Bianchi identity 77

Remark: - If
$$
d^{\nabla}
$$
 is the exterior covariant

\nPerivative, the 2^{ω} Bl`omchi, iOembiy

\nis $d^{\nabla}R = 0$. (true for any

\ntemechion on any vector bundle).

OthernotionsofcurvaturefromRmm

Aside := het
$$
(V, \langle \cdot \rangle)
$$
 be an IPS and

\n $\{e_1, \ldots, e_n\}$ be a basis.\n $A: V \mapsto V$ be a linear map.\n $Ae_i = A_i^je_j^T$. Then $Tr(A) = A_i^i \in \mathbb{R}$.

$$
g^{ij} \langle Ae_{i}, e_{j} \rangle = g^{ij} \langle A_{i}^{l} e_{l}, e_{j} \rangle
$$

= $g^{ij} A_{i}^{l} g_{ij} = A_{i}^{i} = tr(A)$

$$
tr(A) = g\ddot{\cup}\langle Ae_{\dot{\iota}}, e_{\dot{\jmath}}\rangle
$$

more generally *ij* By is a bilinear form
Define
$$
T_{rg}(B) = g^{ij}B_{ij}
$$
.

Let
$$
(M_1g)
$$
 Riemannion and fix X_p , $Y_p \in T_pM$

\nDefine $A_p: T_pM \to T_pM$ be

\n $A_p(Z_p) = R(Z_p, X_p)Y_p$

The property of the property of the

$$
\begin{aligned}\n\text{Pr}(A_p) &= g(A_p e_i, e_j) g_j^{ij} \\
\text{for any basis } e_1, \dots, e_n \text{ of } P_p M. \\
&= g(R(e_i, X_p)y, e_j) g^{ij}\n\end{aligned}
$$

$$
= R(e_i, X_p, Y_p, e_j)g^{ij}
$$

Def ⁿ	The Ricci tensor of g is the (2,0)
tensor Ric $\partial cfinc\partial$	
$Ric(X,Y) = g^{ij} R(e_i, X,Y,e_j)$	
for any local coordinates	
in local coordinates	
$Ric = R_{jk} dx^{j} \otimes dx^{k}$	
$R_{jk} = R_{ijk}g^{il}$	

Risci is symmetric. Remark :-

Claim: - The def n Rée $(X_1Y) = g'Y \otimes (e_1, X_1Y, e_1')$ is well-defened. 17 épromisen be another local frame. Then $\exists P s1 \quad \widetilde{e}_i = P_{im} e_m$ $=0$ $\dddot{g}_{ij} = g(\ddot{e}_{i}, \ddot{e}_{j}) = P_{im}P_{jk}G_{mk}$ i.e. $\tilde{g} = P_{g}P^{T} g^{-1} = (PT)^{-1}g^{-1}P^{-1}$ $\sum_{i=1}^{n} P(\widehat{e}_{i}, X_{i}y, \widehat{e}_{i}) =$ $(pT)^{-1}$ $(a^{-1})_{ab} (p^{-1})_{bj} R(P_{ik}e_{k}, X, Y, P_{jm}e_{m})$ = $(p^{-1})_{ai} (q^{-1})_{ab} (p^{-1})_{bj} P_{ik} p_{jm} R(e_{\kappa}, x_{1}y_{,}e_{m})$ = $S_{aK}S_{bm}(g^{-1})_{ab}R(e_{K}, X,Y, e_{M})$ = $g^{KM}R(e_{\kappa},X,Y,e_{m})$

What is the meaning of Ric?
\nRic is determined by polarization from its
\nassociated quadratic form
\n
$$
q(x) = Ric(X \cdot X)
$$
.
\nlet $\{e_1, ..., e_n\}$ be a local on-forme
\nRic $(e_i, e_i) = g^{k_1} R(e_k, e_i, e_i, e_k)$
\n $\frac{1}{2} \sum_{k=1}^{n} R(e_k, e_i, e_i, e_k)$
\n $= \sum_{k \neq i} R(e_k, e_i, e_i, e_k)$
\n $= \sum_{k \neq i} R(e_k, e_i, e_i, e_k)$

 $\|v-v\|_{K} = \sqrt{\|v\|_{K}}$

$$
= \sum_{k=1}^{n} X(e_{k} \wedge e_{i})
$$
\n
$$
= \sum_{k=1}^{n} X(e_{k} \wedge e_{i})
$$
\n
$$
= \sum_{k=1}^{n} Y_{2-plane spanned}
$$
\n
$$
= \sum_{k=1}^{n} Y_{2-plane spanned}
$$
\n
$$
= \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} \text{geometric series}
$$
\n
$$
= \sum_{k=1}^{n} Y_{2plane spanned}
$$

Scalar Curvature
\n
$$
\mathbb{R} = Tr_{g}(Ric) = g^{ij}Rj
$$

\n80 R is a smooth function on M.
\n $R = n$ (average of Ricci curvature)
\nSpecial Case: -

n=1 :
$$
R_{ijk1} = 0
$$

\nn=2 : R_{ici} , $R_{jk} = g^{ij} R_{ijki}$
\n $R_{ij} = g^{ij} R_{iill} = g^{22} R_{2112} = g^{22} R_{1221}$
\n $R_{22} = g^{ij} R_{i22l} = g^{11} R_{i221} = g^{11} R_{1221}$
\n $R_{12} = g^{il} R_{i12l} = g^{12} R_{2121} = g^{12} R_{221}$

Scalar,
$$
R = 9^{11}R_{11} + 29^{12}R_{12} + 9^{22}R_{22}
$$

\n
$$
= 2(9^{11}9^{22} - (9^{12})^2)R_{1221}
$$
\n
$$
= 2R_{1221} \cdot det(9^{-1})
$$
\n
$$
= \frac{1}{det(9)}
$$
\n
\n8. $\int_{\text{pr}} n=2 \sqrt{R = 2K}$

Defn (Mg) is called Einstein if 7 $\lambda \in C^{\infty}(M)$ s.t

$$
\Omega_{\text{ic}} = \lambda g
$$

Suppose (M,g) is Einstein. Then $R = g^{ij}R_{ij} = g^{ij}\lambda\theta_{ij} = n\lambda$ $= \mathcal{D}$ $\lambda = \frac{R}{n}$ $\frac{3}{p}$ Ric = R g

We'll see enamples of Einstein metrics. $Special case :- Ric = 0 or Ricci-flat.$

$$
\frac{Anic = InGR, the natural equation is\nRic - Rg = T - precosibed RHS\nG = Einstein tensor
$$

Suppose
$$
1=0
$$
 = π $Ric = R/2$
\n π
\n π
\n $R = \frac{nR}{2} = 0 \text{ m} \neq 2 = 0$
\n $R = 0$

$$
Ric = 0
$$
.
\n $2 \cdot i \cdot f$ 12 000 120 1100 11000 120 11000 120

$$
\frac{E_{re}}{D} = \frac{P_{x0}u}{Var_{y1}u} = \frac{P_{k}R_{j1}u}{Var_{k1}u} = \frac{P_{k1}R_{j1}u}{Var_{k2}u} = \frac{P_{k2}u}{Var_{k2}u} = \frac{P_{k1}u}{Var_{k1}u} = \frac{P_{k2}u}{Var_{k2}u}
$$

 \sim

 $\sigma_{\rm eff}$ and $\sigma_{\rm eff}$

Lemma:	26.1	20.1	20.1	20.1	20.1
$\{e_2 \wedge e_3, e_3 \wedge e_1, e_1 \wedge e_2\} \wedge \frac{1}{2} \wedge \frac{2}{2} \wedge \frac{1}{2} \wedge \frac{2}{2} \wedge \frac{e_3}{2} \$					

$$
Rc = \frac{1}{2} \begin{bmatrix} \lambda_1 + \lambda_3 & 0 & 0 \\ 0 & \lambda_3 + \lambda_1 & 0 \\ 0 & 0 & \lambda_1 + \lambda_2 \end{bmatrix}
$$

and the scalar curvature $R = \lambda + \lambda_z + \lambda_s$. Proof Exercise

<u>Lemma</u> :- Let (M, g) be an Einsteinmanifold w nz 3. Men M has constant scalar auxature $\frac{11}{3}$ $\frac{1}{2}$ g has constant sectional curvature Proof - exercise

Beth Constantcurvature metrics

 \mathbb{R}^n w/ Euclidean metric has constant sec. curvature \circ . $S_R^n = \frac{S}{2} x \in \mathbb{R}^{n+1}$, $|x| = R \frac{S}{2} w /$ the ground metric has

 $constant$ sectional curvature $\frac{1}{R^2}$.

$$
\mathbb{H}_{R}^{n}
$$
, the hypothesis space of radius R which is an open ball of the radius R in \mathbb{R}^{n} of the radius $g_{ij}(x) = \frac{4R^{4}S_{ij}}{}$

 $(R^{2}-|x|^{2})^{2}$

has constant curvature $\sim \sqrt{R^2}$.

Any complete, simply connected Kiemm n-fold w constant sectional curvature is isometric to one of the deane depending on the sign.