
covariant derivative

To differentiate tensors we need a connection

Def Let ETH be a v b A connection on E
is a map
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3 For fe 0cm I satisfies the Leibniz rule
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Ix is the covariantderivative of Y in the directionofX

Mj which in local coordinates can be defined as
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Lemmy If TM is the tangenthandle the we can

define connections on all tensor bundles RICH s t
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Def Gradient

Let f e 09m d f e r TM

df e f TM is called the gradient

of f went g and is denoted by If

I ales I f f

check that themap X x XY is not
a tensor
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The Levi Civita Connection

Let Mig Riemm mfed

Defn A connection I on TM is said

to be compatible withy if

Ig 0

ly g is parallel
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Recay 0 The torsion T of a connection

Fon TM is

x y TY Ty X x is
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The Fundamental Theoremof Riemannian
geometry

Let Ng be Riemm Then 7 Conne

ction I that is both metric compatibl

and torsion free I is called the

Levi Civita connection

Proof 0 We'll show that it must be

unique y it exists by deriving a formula

for it Koszul formula
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So Tx is determines uniquely
Define I by this formula and show that

I is compatible and torsion free

in localcoordinates the Christoffel

symbols of T are for X ai
y Dj
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Net If Uand V E IR are open them a diffeo
V U W is called orientation preserving if the Jaco
bean matrix DY p E GL n IR has positive

determinantf pe U
e g Y m 9 0 is y is an orientation

preserving differ

Deft A smooth atlas A 4 notation
if all of its transition maps x

preserving

An orientation of M w maximal smooth atlas A is a

subset A C A that forms a maximal oriented altar

for M
A smoothmanifold that has been equipped w

an

orientation A is called an orientedmanifold



Orientation

If M is orientable then a choice of such a

cover or equivalently a choice of nowhere
zero n form is called an orientation for M

Such a form M is called a volumeforme
on M Two volume forms M T corresponding
to the same orientation M f te

for some f e C M s t f is everywhere
Joositive



hat M be orientable and have k connect

ed components then F 2 orientations on M

If M is oriented compact we can

integrate n forms on M Jw E IR
M

w e rn M

Stokestheorem If 217 0
then f do O
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Def A manifold w volume form is an

oriented mfid M together w a

particular choice he representative of the

equivalence class of the orientation

If M is compact the we can integrate

functions on M by Befining

Jf Sfm
M M

whose value Iep ends on the choice of ke

het Min be a manifold w volume form
Define the divergence div Mtm 00cm

linear

by Lyte d x u X die

divx u To



depends on ne

Notice dir X 00 0 Lxx O

0 Of M M where

Oz is the flow of X
M is invariant umber flow

of X
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80 flow of a divergence free v f preserves
the volume

DivergenceTheorem

Let Xe MTN Mike be compact

then f divx 0 as

M

divx he d Xue o byStokes
Them

Let Mig be an oriented Riemannian

manifold Then F a canonical volumeform

M on Mig defined by the requirement
that

M er en L whenever er ien



8 an oriented orthonormal basis of TpM Ip
i e grim a local oriented on frame for

M e em

he ein ez n hen

M Jdetg da r Adan in
any

local coordinates x se x

Divergence theorem holds for anymanifold

w volume p also holds for oriented
Riemm vol form and symplecticmanifolds

Curvature of the Levi Civita
connection

We call R as the Riemann curvature tensor of
g
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Remand R 0 and T O
if

F local parallel coordinate

fame

One defofbeing flat for any connection
is RIO

emo for a Riem mfld we defined flat
as locally isometric to IR g

for the Riemannian curvature of Levi Civita
conn the two notions of flatness are the

same

check that
Rm f x x 2 Rm X Y 2 Rm X Y 721

F Rm XD Z



If we define
V y 2 TxTyZ Te

Z then

Rm Xi 2 T 2 V3 x 2

The components of the
311 tensor Rm are defined as

Rm E Era Riji
we alsodefine

pig Rig gem whichgivesthe componentsof
the 4,0 Rm

Rijk Rm Oi Oj 2k 2 Rm ai 2 2k 21

Remarks one mustbecarefulandcheckthe convention forlowering

the upper index tothe lower one


