Problem Set 1 Due date: 08.05.2025

Problems

- (1) Let M^n be a closed manifold.
 - (a) Prove the **Bochner formula** for $|\nabla f|^2$, i.e., for $f \in C^{\infty}(M)$, prove that

$$\Delta |\nabla f|^2 = 2|\nabla \nabla f|^2 + 2R_{ij}\nabla^i f \nabla^j f + 2\nabla_i f \nabla^i (\Delta f). \tag{0.1}$$

Conclude from this that if Ric ≥ 0 , $\Delta f = 0$ and $|\nabla f| = \text{constant then } \nabla f$ is parallel.

(b) Prove the following integral equality:

$$\int_{M} |\nabla \nabla f|^{2} \operatorname{vol} + \int_{M} \operatorname{Ric}(\nabla f, \nabla f) \operatorname{vol} = \int_{M} (\Delta f)^{2} \operatorname{vol}$$
(0.2)

and using the fact that¹, $|\nabla \nabla f|^2 \geq \frac{1}{n}(\Delta f)^2$, show that

$$\int_{M} \operatorname{Ric}(\nabla f, \nabla f) \operatorname{vol} \leq \frac{n-1}{n} \int_{M} (\Delta f)^{2} \operatorname{vol}.$$
(0.4)

(**Hint:** Integration by parts!)

- (c) Use the above to prove the following theorem due to **Lichnerowicz.** Suppose f is an eigenfunction of Δ with eigenvalue $\lambda > 0$, i.e., $\Delta f + \lambda f = 0$. If $\text{Ric} \geq (n-1)K$ for some constant K > 0 then $\lambda > nK$.
- (2) (a) The purpose of this problem is to show that in dimension 3, the Ricci curvature determines the Riemann curvature tensor.

Let (M^3,g) be a 3-dimensional Riemannian manifold and let us diagonalize the curvature operator (as a self-adjoint operator on 2-forms) Rm with respect to a basis $\{e_2 \wedge e_3, e_3 \wedge e_1, e_1 \wedge e_2\}$ of $\Lambda^2 T^*M$, where $\{e_1, e_2, e_3\}$ is an orthonormal basis of TM^3 (this is possible because Rm is self-adjoint). Suppose that, with respect to this basis, Rm is a diagonal matrix with entries $\lambda_1, \lambda_2, \lambda_3$ down the diagonal. Then with respect to the basis $\{e_1, e_2, e_3\}$, prove that the Ricci tensor takes the form

$$Ric = \frac{1}{2} \begin{bmatrix} \lambda_2 + \lambda_3 & 0 & 0 \\ 0 & \lambda_3 + \lambda_1 & 0 \\ 0 & 0 & \lambda_1 + \lambda_2 \end{bmatrix}$$
 (0.5)

and the scalar curvature $R = \lambda_1 + \lambda_2 + \lambda_3$. (**Hint:** Use the geometric interpretation of the Ricci and scalar curvatures.)

- (b) Prove that an Einstein metric on a manifold of dimension $n \ge 3$ has constant scalar curvature. If n = 3, the metric has constant sectional curvature.
- (3) Instead of the Ricci flow, one can also look at the volume normalized version of the Ricci flow called the **normalized Ricci flow** which is the the following evolution equation for a family of metrics g(t) on M^n :

$$\frac{\partial g(t)}{\partial t} = -2\operatorname{Ric}(g(t)) + \frac{2}{n} \frac{\left(\int_{M} R \operatorname{vol}\right)}{\left(\int_{M} \operatorname{vol}\right)} g(t) \tag{NRF}$$

where R is the scalar curvature. The advantage of (NRF) is that the volume of the evolving manifolds remains constant along (NRF). Prove that:

- (a) The volume of the manifold remains constant along the NRF.
- (b) A compact manifold (M^n, q) is a fixed point of (NRF) if and only if it is an Einstein manifold.
- (c) Show that the unnormalized and normalized Ricci flows differ only by a rescaling of space and time.

$$|S_{ij}|_g^2 \ge \frac{1}{n} (g^{ij} S_{ij})^2 \tag{0.3}$$

 $^{^{1}\}mathrm{This}$ is the usual Cauchy-Schwarz inequality. More generally, if S is any $(2,0)-\mathrm{tensor}$ then