Recall that the time derivative $\frac{\partial}{\partial t} g(t)$ is
defined as

$$
\left(\frac{\partial}{\partial t} g\right)(x, y)=\frac{\partial}{\partial t} g(x, y)
$$

time-derivative of the smooth function $g(x, y)$.
In local coordinates,

$$
\begin{aligned}
g(t) & =g_{i j}(t) d x^{i} \otimes d x^{i} \\
\Rightarrow \quad \partial t g(t) & =\dot{g}_{i j}(t) d x^{i} \otimes d x j .
\end{aligned}
$$

\therefore the time derivative of the metric is the time derivative of it components functions w.r.f. a fixed basis.
similarly $\left(\frac{\partial}{\partial t} \nabla\right)(x, y)=\frac{\partial}{\partial t} \nabla_{x} y$.
now ∇ is NOT tensorial, but $\frac{\partial}{\partial t} \nabla$ is a tensor as

$$
\begin{gather*}
\left(\partial_{t} \nabla\right)(x, f y)=\frac{\partial}{\partial t}\left(\nabla_{x} f y\right)=\frac{\partial}{\partial t}\left(x(f) y+f \nabla_{x} y\right) \\
=f \partial_{t} \nabla_{x} y=f\left(\frac{\partial}{\partial t} \nabla\right)(x, y) \tag{四}
\end{gather*}
$$

Variational Formulas
Giem any smooth family of metrics it is desirable to compute the variations of all the associated quantities. We summarize then below for the case when

$$
\partial_{t} g_{i j}=h_{i j}, \quad n \in r^{2}\left(T^{a} M \otimes_{s} T^{n} M\right)
$$

Lemma:-

$$
\left(g^{i j} g_{j k}=\delta_{k}^{i} \Rightarrow\left(x^{\prime} g^{j}\right)_{f_{j k}}=-g^{i} h_{j_{j}}\right)
$$

$$
\begin{aligned}
& \partial_{t} g^{i j}=-g^{i k g j l} h_{k l} g \\
& \cdot \partial_{t} \Gamma_{i j}^{k}=\frac{1}{2} g^{k l}\left(\nabla_{i} h_{j l}+\nabla_{j} h_{i l}-\nabla_{l} h_{i j}\right) \\
& \partial_{t} R_{i j k}^{l}=\frac{1}{2} g^{l p}\left\{\begin{array}{l}
\nabla_{i} \nabla_{j} h_{k \rho}+\nabla_{i} \nabla_{k} h_{j \rho} \\
-\nabla_{i} \nabla_{p} h_{j k}-\nabla_{j} \nabla_{i} h_{k p} \\
-\nabla_{j} \nabla_{k} h_{i \rho}+\nabla_{j} \nabla_{p} h_{i k}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} g l p\left\{\begin{array}{l}
\nabla_{i} \nabla_{k} h_{j \rho}+\nabla_{j} \nabla_{p} h_{i k}-\nabla_{i} \nabla_{p} h_{j k} \\
-\nabla_{j} \nabla_{k} h_{i p}-R_{i j k}^{q_{i k}} h_{q \rho}-R_{i j p}^{q_{i j}} h_{k q}
\end{array}\right\} \\
& \text { - } \partial_{t} R_{j k}=\frac{1}{2} g p q\left(\nabla_{q} \nabla_{j} h_{k p}+\nabla_{q} \nabla_{k} h i p\right. \\
& \text { - } \left.\nabla_{q} \nabla_{p} h_{j k}-\nabla_{j} \nabla_{k} h_{q p}\right) \\
& \text { - } D_{t} R=-\Delta(\operatorname{trh})+\nabla^{p} \nabla^{q} h_{p q}-\langle h, R c\rangle \\
& \text { - } \partial_{t \text { vol }}=\frac{\text { th }}{2} \text { vol (proof below) } \\
& \text { - } \partial t \int R \operatorname{Roolg}=\int_{M .}\left(\frac{R(\operatorname{trh} h)}{2}-\langle h, R c\rangle\right) \text { vol }
\end{aligned}
$$

Along the RF we have following improvements

$$
\begin{aligned}
\partial_{t} R= & \Delta R+2\left|R_{c}\right|^{2} \text {-proof below. } \\
\partial_{t} R_{j k}= & \Delta R_{j k}+2 g^{p q} g^{r s} R_{p j k r} R_{q s} \\
& -2 g p q \text { R jp } R_{q k} .
\end{aligned}
$$

proof: : $-\partial_{t} R_{j k}=\Delta R_{j k}+\nabla_{j} \nabla_{k} R-g p q\left(\nabla_{q} \nabla_{j} R_{k p}\right.$ $\left.+\nabla_{q} \nabla_{k} R_{j \rho}\right)$

$$
\begin{aligned}
=\Delta R_{j k}+\nabla_{j} \nabla_{k} R-g p q & \left(\nabla_{j} \nabla_{q} R_{k p}-R_{q j k m} R_{m p}\right. \\
& -R_{q j p m} R_{k m} \\
& +\nabla_{k} \nabla_{q} R_{j p}-R_{q_{k j} m} R_{m p}
\end{aligned}
$$

$$
-R q k p m R j m \quad
$$

$$
=\Delta R_{j k}+\nabla_{j} \nabla_{k} R-\left(\frac{1}{2} \nabla_{j} \nabla_{k} R+\frac{1}{2} \nabla_{k} \nabla_{j} R\right.
$$

$$
-R_{p j k m} R_{p m}+R_{j m} R_{k m}
$$

$$
-R_{p k j m} R_{p m}+R_{k m} R_{j m}
$$

$$
=\text { RUS. }
$$

Proof for $\partial_{4} R$.
we have $\partial_{t} R=-\Delta\left(\operatorname{tr}\left(-2 R_{c}\right)\right)+\operatorname{div}\left(\operatorname{div}\left(-2 R_{c}\right)\right)$

$$
=2 \Delta R-\Delta R+2|R e|^{2} \quad \text { - }\left\langle-2 R_{c}, R_{c}\right\rangle
$$

$$
=\Delta R+2|\operatorname{Ric}|^{2} .
$$

Pro of for the enolutiai of vol.
first recall that in e local coordinates, the volume form

$$
\begin{aligned}
& \text { vol }=\sqrt{\operatorname{def}_{g_{i j}}} d x^{\prime} \wedge \ldots \wedge d x^{n} \\
& b \text { det of } g_{i j}=g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x j}\right)
\end{aligned}
$$

Recall that

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A \text { for a square matrix } A
$$

where $\operatorname{adj} A=\operatorname{adjugate}$ matrix = transpose of the cofactor matrix

The partial derivaturie of $\operatorname{det} A$ w.r.t. (i, j) th entry is

$$
\begin{aligned}
\frac{\partial}{\partial a_{i j}} \operatorname{det}(A) & =(-1)^{i+j} \operatorname{det} A_{i j} \\
& =(\operatorname{adj} A)_{j i}=\operatorname{det} A\left(A^{-1}\right)_{j i}
\end{aligned}
$$

$\therefore 0$

$$
\frac{\partial}{\partial t} \sqrt{\operatorname{det} g_{i j}}=\frac{1}{2 \sqrt{\operatorname{det} g_{i j}}} \frac{\partial}{\partial t} \operatorname{det} g=\frac{1}{2 \sqrt{\operatorname{det} g}} \frac{\partial \operatorname{det} g}{\partial g_{i j}} \frac{\partial g_{i j}}{\partial t}
$$

$$
\begin{aligned}
& =\frac{1}{2 \sqrt{\operatorname{det} g}} \operatorname{det} g\left(g^{-1}\right)_{j i} h_{i j} \\
& =\frac{1}{2} \sqrt{\operatorname{det} g} g^{i j} h_{i j} \\
\therefore \text { ot vol } & =\frac{(t r h)^{2}}{2} \text { vol. }
\end{aligned}
$$

The proofs for the endutions of $R_{m}, R_{i c}, R$ and Γ for general variations can be done using the local coordinate expressions of these quantities and noticing that they are all components of a tensor (Γ is not but $\partial_{t} \Gamma$ is) and hence we can simplify our calculations by working in e normal coordinates at a point.
We did this in detail in the class.

