DerTurck's trick

Recall: - · RF is NOT ponabolic.

· Diffeo invaniance is the only obstruction to the parobol. of RF.

Theorem (Hamilton '82)
If (Migo) is a closed manifold then
$$\exists !$$

 $g(t)$ defined for $t \in [One]$ to $RF \ s.t$.
 $g(b) = g_0, \epsilon > 0$.
 $g_1(t), g_2(t), g_1(0) = g_2(0)$ then
 $g_1(t) = g_2(t)$ $t \in t$.
 $g_1(s) = g_2(s)$ for some $s \in \mathbb{R}$.
 $=D \ g_1(t) = g_2(t)$ $\forall t$.

De nurck's trick

$$-2 [D(Ricg)(h)]_{ik} = \Delta h_{ik} + g^{PQ} (\nabla_i \nabla_k h_{PQ}) - \nabla_q \nabla_i h_{kp} - \nabla_q \nabla_k h_{ip})$$

= Ahik + gpq (ViVkhpq - Vi Vq, hKp + Rqikshsp + Rqipshks - VKVg hip + Rg, Kis hsp + Rg, Kpshi) = Ahik + 3PO V; VK hpgs - grov V; Va hpx -gro VKVq, hpi + Six ---- (1) $B_{g} : \Gamma(S^{2} \cap M) \longrightarrow \Gamma(\cap M)$ $[B_q(h)]_k = \nabla_i h_{ik} - \frac{1}{2} \nabla_k h_k$ Duppose U = Bg(h) $V_{K} = g^{PQ} \left(\nabla_{q} h_{pK} - \frac{1}{2} \nabla_{K} h_{pQ} \right)$ Vi VK = gP& (Vi Vg hpk - 1 Vi Vk hpg) VKV: = grav (VKVqhpi- VKV; hpq) (2)from () and (2) we see that -2 [D(Ricy)(h)]ir = Ahir - ViVr - VrVi + SIK .

 $V_{k} = \frac{1}{2} g^{PQ} \left(\nabla_{P} h_{qk} + \nabla_{q} h_{Pk} - \nabla_{k} h_{Pq} \right)$ $= g^{Pq} g_{kr} \left(D \int_{g} (h) \right)_{pq}^{r}$

fix some background metric \tilde{g} ou M, L-Gconnection \tilde{F} define a vector field W $W^{K} = g^{PQ} \left(\Gamma_{Pq}^{K} - \widetilde{\Gamma}_{Pqr}^{K} \right)$

Wis well-defined U.f. ou M as difference of Two connections is a tensor.

Look at $P = P(\tilde{\Gamma}) : \Gamma(S^2 \Lambda^* M) \rightarrow \Gamma(S^2 \Lambda^* M)$

$$P(g) = J_W g$$

a 2nd-order operator.

Pio

 $[DP(h)]_{ik} = \nabla_i \mathcal{V}_k + \nabla_k \mathcal{V}_i + 1.0.1.$

We look at the modified operator Q = - 2Ric + P DQ(h) = Ah + 1. o.t. Ricci-De Nurck flow

:. Q is elliptic => $\partial_t g = Q(\dot{g})$ is parabolic => \exists_1 solution to

$$\partial_t g = -2Ric(g) + P(g)$$
 for some
short time.

 $\begin{aligned} &\mathcal{F}_{jij} = -\mathcal{R}_{ij} + \nabla_i W_j + \nabla_j W_j \\ &\mathcal{G}_{00} = \mathcal{G}_0 \\ W_j = \mathcal{G}_{jk} \mathcal{G}_{pq} \left(\Gamma_{pq}^{k} - \widetilde{\Gamma_{pq}^{k}} \right) \\ &\text{top a sol} \quad \mathcal{G}_{(k)} + \epsilon \text{ Fore} \end{aligned}$

 \sim sol to RDAF excists =0 \exists family of u.f. W(t) excists \forall te[0, e).

=0 3 1-parameter family of maks

$$\Psi_t: M - M$$
 which one generated by
 $-W$
 $\partial_t \Psi_t(p) = -W(\Psi_t(p), t)$
 $\Psi_0 = od_M$. [closedness of
M is used]

Claim: - g(t) is a solo to the R.F. $\partial_t \overline{g}(t) = - 2 Ric(t) \begin{bmatrix} \partial_t (\Psi_t^* F(t)) \\ - \Psi_t^* (\Psi_t^* F(t)) \end{bmatrix}$ $\partial_t \overline{g}(t) = \partial_t (\Psi_t^* g(t)) \begin{bmatrix} \partial_t (\Psi_t^* F(t)) \\ - \Psi_t (\Psi_t^* F(t)) \\ - \Psi_t (\Psi_t^* g(t)) \end{bmatrix}$ $= \varphi_{t}^{*} \left(\chi^{-m(t)} g_{(t)} \rightarrow g^{t} g_{(t)} \right)$ $= \varphi_t^* (d - w(t)g(t)) - 2Ric(g(t))$ + ~ w(+)g(+)) $= \Psi_{t}^{*} \left(-2 \operatorname{Ric}(g(t))\right)$ $= -2Ric(\Psi_{t}^{*}g(H))$ = - $2Ric(\bar{q}(t))$ $= -2Ric(\bar{g}(t))$ =) J(t) is a sol to the RF On [OIE) - existence of Dola to the RF. 5

Uniqueness is still left:-

$$\mathcal{G} : \mathcal{C}(\mathcal{H}) \longrightarrow \mathbb{R}_{\geq 0} \mathcal{E}(\mathcal{H}) = \int |\nabla \mathcal{U}|^2 v d$$

 M
 L regative gradient frow
 $\frac{\partial \mathcal{U}(\mathcal{H})}{\partial \mathcal{E}} = \Delta \mathcal{U}(\mathcal{H}) - Hormonic map heat flow.$

Given (M,g_{δ}) closed $\exists 1 \\ sol^{\circ} to the RP$ on $[o_{\ell} \in .)$.

$$u(t)$$
, parabolic eqn
 $U(x(0) \ge Co$
 $U(x(t) \ge Co$.

Of Rm = ARm + extra terms.

Theorem (2) (charatonization of the existence
4ime)
Solⁿ to the RF. will exist as long as
IRml is bounded.
Theorem (1) (a priori estimates,
Serivative estimates, Shi-type
estimates)
If IRml < G then
$$|\nabla^{k}Rm| < C'$$
.

<u>Theorem</u> (compactness the for solutions) Under certain conditions, a sequence of oolⁿ converge to a limit which is also

a solo to the RF.

Gromov-Hausdorff convergence.