Differential operators and basics of the Ricci flow
We recall that the square of the covariant clerivature b

$$
\nabla^{2}: r\left(T_{q}^{p} M\right) \longrightarrow \Gamma\left(T_{q}^{p+2} M\right)
$$

w)

$$
\begin{aligned}
\nabla_{\alpha}^{2}\left(x, y, z_{1}, \ldots, z_{p}\right)= & \nabla_{x}\left(\nabla_{\alpha}\right)\left(y, z_{1}, \ldots, z_{p}\right) \\
= & {\left[\nabla_{x}\left(\nabla_{\alpha}(y)\right)-\nabla_{\alpha}\left(\nabla_{x} y\right)\right] } \\
& \left(z_{1}, \ldots, z_{p}\right) \\
= & \nabla_{x}\left(\nabla_{y \alpha}\right)\left(z_{1}, \ldots, z_{p}\right)-\nabla_{\nabla_{x} y} \alpha\left(z_{\left.1, \ldots, z_{p}\right)}\right.
\end{aligned}
$$

so lie short

$$
\nabla_{x, y}^{2} \alpha=\nabla_{x} \nabla_{y} \alpha-\nabla_{\nabla_{x} y} \alpha
$$

For ex. in local coordinates

$$
\begin{aligned}
\nabla_{i} R_{j k} & =\left(\nabla R_{c}\right)\left(\partial_{i}, \partial_{j}, \partial_{k}\right) \\
& =\left(\nabla_{\partial i} R_{c}\right)\left(\partial_{j}, \partial_{k}\right)
\end{aligned}
$$

$$
=\frac{\partial}{\partial x^{i}} R_{j k}-\Gamma_{i j}^{l} R_{l k}-\Gamma_{i k}^{l} R_{j l}
$$

Similarly

$$
\begin{aligned}
\nabla_{i} R_{j k 1 m}= & \partial_{i} R_{j k 1 m}-\Gamma_{i j}^{p} R_{p k I m}-\Gamma_{i k}^{p} R_{j p i m} \\
& -\Gamma_{i l}^{p} R_{j k p m}-\Gamma_{i m}^{p} R_{j k 2 p}
\end{aligned}
$$

for a function $f$, one can show that

$$
\begin{aligned}
\nabla_{i} \nabla_{j} f & =(\nabla \nabla f)\left(\partial_{i}, \partial_{j}^{j}\right) \\
& =\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}-\Gamma_{i j}^{k} \frac{\partial f}{\partial x^{k}}
\end{aligned}
$$

* We denote the $m$-th order derivative of $\alpha$ by $\nabla^{m} \alpha=\underbrace{\nabla \cdots \nabla}_{m-t i m e s} \alpha$
and it components will be denoted by

$$
\nabla_{i_{1}} \ldots \nabla_{j_{m}} \alpha_{i_{1} \ldots i_{p}}
$$

Lie Senivatuie

$$
\begin{aligned}
& \quad \text { for } x, y \in \Gamma(T M) \\
& d_{x} y=[x, y] w / \\
& {[x, y] \in \Gamma(T M) \text { sf. }} \\
& {[x, y](f)=x(y(f))-y(x(f)) .}
\end{aligned}
$$

If $\theta$ is a $(-$ form thew

$$
(\mathscr{L} x \theta)(y)=x(\theta(y))-\theta([x, y])
$$

ken though one doesn't need a metric to define the Lie derivative, it is related to the L-C connection via the formula

$$
\begin{aligned}
& (\mathcal{L} x A)\left(y_{1}, \ldots y_{p}, \theta_{1}, \ldots, \theta_{q}\right) \\
& =x\left(A\left(y_{1}, \ldots, y_{p}, \theta_{1}, \ldots, \theta_{q}\right)\right) \\
& -\sum_{1 \leq i \leq p} A\left(y_{1}, \ldots,\left[x_{1} y_{i}\right], \ldots, y_{p}, \theta_{1}, \ldots, \theta_{q}\right) \\
& - \\
& \sum_{1 \leq j \leq q} A\left(y_{1}, \ldots, y_{p}, \theta_{1}, \ldots, \mathcal{L}_{x} \theta_{j}, \ldots, \theta_{q}\right)
\end{aligned}
$$

In particular, when $A=g$ then

$$
(d x g)(y, z)=g\left(\nabla_{y} x, z\right)+g\left(y, \nabla_{z} x\right)
$$

whose expression ie coordinates give

$$
(\alpha \times g)_{i j}=\nabla_{i} x_{j}+\nabla_{i j} x_{i}
$$

If $x=\nabla f$ for $f \in C^{\circ}(M)$ then

$$
\begin{aligned}
\left(\mathcal{L}_{x} g\right)_{i j}=\left(\mathcal{L}_{\nabla f} g\right)_{j j} & =\nabla_{i} \nabla_{j} f+\nabla_{j} \nabla_{i f} \\
& =2 \nabla_{i} \nabla_{j} f .
\end{aligned}
$$

Ricui Identities
we have

$$
\left(\nabla_{i} \nabla_{j}-\nabla_{j} \nabla_{i}\right) \alpha_{R_{1} \ldots, k_{l}}=-\sum_{l=1}^{r} R_{i j k_{l}}^{m} \alpha_{k_{1} \cdots k_{l-1} m k_{l+1} \cdots R_{l}}
$$

So for a 1 -form $\alpha$,

$$
\left(\nabla_{i} \nabla_{j}-\nabla_{j} \nabla_{i}\right) \alpha_{R}=-R_{i j k l} \alpha_{l}
$$

or for a 2-tensor $\beta$

$$
\nabla_{i} \nabla_{j} \beta_{k l}-\nabla_{j} \nabla_{i} \beta_{k l}=-R_{i j k m} \beta_{m l}-R_{i j l m} \beta_{k m}
$$

The divergence of a $(p, 0)$-tensor is

$$
\begin{aligned}
(\operatorname{div}(\alpha))_{i_{1} \ldots i_{p-1}} & =g^{j k} \nabla_{j} \alpha_{k i_{1} \ldots i_{p-1}} \\
& =\nabla_{j} \alpha_{j i_{1} \ldots i_{p-1}}
\end{aligned}
$$

for 1 -forms $\alpha$, div $\alpha$ is a function,

$$
\operatorname{div} \alpha=\nabla_{i} \alpha_{j}
$$

Laplacian
Laplarion $\Delta$ an functions is $\operatorname{div}$ (grad)
ie,

$$
\begin{aligned}
\Delta=\operatorname{div} \nabla & =g^{i j} \nabla_{i} \nabla_{j} \\
& =g^{j}\left(\frac{\partial^{2}}{\partial x^{j} \partial x^{j}}-\Gamma_{i j}^{k} \frac{\partial}{\partial x^{k}}\right)
\end{aligned}
$$

For tensors, again

$$
\begin{aligned}
\Delta=\operatorname{div}(\operatorname{grad}) & =\operatorname{trace} g \nabla^{2} \\
& =g i j \nabla_{i} \nabla_{j}
\end{aligned}
$$

Exercise:- Prove the Bochner formula for $|\nabla f|^{2}$

$$
\begin{aligned}
& \text { i.e, } \forall f \in C^{\infty}(M) \\
& \Delta|\nabla f|^{2}=2|\nabla \nabla f|^{2}+2 R_{i j} \nabla_{i} f \nabla_{j} f+2 \nabla_{i} f \nabla_{i}(\Delta f) .
\end{aligned}
$$

Conclucle that is $R_{c} \geq 0, \Delta f \equiv 0$ and $|\nabla f|=1$ there $\nabla f$ is parallel.

We also have the divergence theorem and integratiaie by pants formula. Let $M^{n}$ be a closed manifold and $u, v \in C^{\infty}(M)$ and $X \in \Gamma(\Gamma M)$.
Then

$$
\begin{aligned}
& \int_{M} \operatorname{div} X \text { vol }=0 \text { and so } \\
& \int_{M} \Delta u v o l=0 \\
& \int_{M} u \Delta v \text { vol }=\int_{M} v \Delta u \text { vol } \quad \text { (Integration by } \\
& \text { pants). }
\end{aligned}
$$

Rice flow
Let $\left(M^{n}, g_{0}\right)$ be given.
Def A Rick flow on $\left(M^{n}, g_{0}\right)$ is a family of metrics $(g(t))_{t \in[0(t)}$ st.

$$
\begin{align*}
\partial_{t} g(t) & =-2 R i c(g(t)) \\
g(0) & =g_{0} .
\end{align*}
$$

$\epsilon$ depends au $M^{n}$ and $g_{0}$.
Examples:-
(1) If $g_{0}$ is Ricci-flat, i.e, Pic $=0 \Rightarrow g(t)=g_{0}$ if is a sols. Note that $t \in(-\infty, \infty)$ is this cave. egg. when $M=\mathbb{R}^{n}$ or flat torus.
(2) Let $g_{0}$ be an Einstemi metric, ie,

$$
\operatorname{Ric}\left(g_{0}\right)=\lambda g_{0} \text { for some } \lambda \in \mathbb{R} \text {. }
$$

Then $g(t)=(1-2 \lambda t) g_{0}$ is a sol to $\overparen{R F}$
as

$$
\begin{aligned}
\partial t g(t)=-2 \lambda g_{0} & =-2 \operatorname{Ric}\left(g_{0}\right) \\
& =-2 \operatorname{Ric}\left((1-2 \lambda t) g_{0}\right) \\
& =-2 \operatorname{Ric}(g(t))
\end{aligned}
$$

$\therefore g(t)=0$ at $t=\frac{1}{2 \lambda}$.
If $\lambda>0$ then the solutions are shrinking as $g(t)$ is shrinking from $g_{0}$.
$\lambda=0 \quad$ static sol
$\lambda<0$ expanding sol?.
A concrete case is that of $\left(s^{n}, g_{0}\right)$. Here

$$
\operatorname{Ric}\left(g_{0}\right)=(n-1) g_{0} \Rightarrow g(t)=(1-2(n-1) t) g_{0}
$$

is a sol to $R F$. and the sorn exists sill $T=\frac{1}{2(n-1)}$.
Pictorially, the flow runs by shrinking the sphere until it becomes a point.


Def:- $g(t)$ is called an eternal sol if $t \in(-\infty, \infty)$.

- $g(t)$ is an ancient sol if

$$
t \in(-\infty, c), c<\infty .
$$

(egg. round sphere)

- $g(t)$ is an immortal sol in $t \in(\alpha, \infty), \quad \alpha>-\infty$.
symmetries of $R F$

$$
\text { * }(M, g(t))_{t \in I} \text { is } R F \longrightarrow\left(M, g_{t-t_{0}}\right)
$$

is a RF. $t \in \mathscr{I}+t_{0}$

* Parabolically rescaling a RF gives another RF "time scales like (distance) ${ }^{211}$ i.e. if $g(t)$ is a RF then

$$
\hat{g}\left(x(t)=\lambda g\left(x, \frac{t}{\lambda}\right), t \in[0, \lambda T]\right. \text { is also a RF. }
$$

as $\partial_{t} \hat{g}(x, t)=\lambda \cdot \frac{1}{\lambda} \partial t g\left(x, \frac{t}{\lambda}\right)=-2 \operatorname{Ric}(g(x, t / \lambda)$.

$$
=-2 \operatorname{Ric}(\hat{g}) .
$$

* Siffeomorphism invariance if $\varphi: M \rightarrow M$ is a differ. and $g(t)$ is a RF then so is $\varphi^{*} g(t)$.

Rick flow regarded as a heat eq
Def n:- Local coordinates $\left(x^{i}\right)$ are called harmonic

$$
\begin{aligned}
& \text { if } \Delta x^{i}=0 . \\
& \therefore 0=\Delta x^{i}=g^{j k}\left(\partial_{j} \partial_{k}-\Gamma_{j k}^{l} \partial_{l}\right) x^{i}=-g^{j k} \Gamma_{j k}^{l} .
\end{aligned}
$$

Lemma:- For p EM $\exists$ harmonic coordinates ic some nba. of $p$.
Lemme:- In harmonic coordinates,

$$
-2 R_{i j}=\Delta\left(g_{i j}\right)+Q_{i j}\left(g^{-1}, \partial g\right)
$$

Laplacian aterm involving quadratic of components expressions in metric inverse $g^{-1}$ and $\partial g$.

* Notation:- For tensors $A, B$
$A * B$ would mean "some linear combination of traces of $A \otimes B w /$ coefficients that do not olepend on $A$ or $B$ ".
Do various contractions b/w tensors whose
precise forms are not important.
$\therefore$ in harmonic coordinates, indeed

$$
\partial_{t} g_{i j}=\Delta\left(g_{i j}\right)+\theta_{i j}\left(g^{-1}, \partial g\right) .
$$

Proof of the lemma:-
Recall the formula for $R_{j k}$ ie local coordinates give

$$
\begin{aligned}
& -2 R_{j k}=-2\left(\partial q \Gamma_{j k}^{q}-\partial_{j} \Gamma_{q k}^{q}+\Gamma_{j k}^{p} \Gamma_{q p}^{q}-\int_{q k}^{p} \Gamma_{j p}^{q}\right) \\
& =-2\left(\partial q\left(\frac{1}{2} g q r\left(\partial_{j} g_{r k}+\partial_{k} g_{r j}-\partial_{r} g_{j k}\right)\right)\right. \\
& -\partial_{j}\left(\frac{1}{2} g q r\left(\partial q_{j} g_{k r}+\partial_{k} g_{q \gamma}-\partial r g_{k q}\right)\right) \\
& \left.+\Gamma_{j k}^{p} \Gamma_{q \rho}^{q}-\int_{q-}^{p} \Gamma_{j p}^{q}\right) \\
& =-\partial q_{r}\left(g q r\left(\partial_{j} g_{r k}+\partial_{k} g_{r j}-\partial_{r} g_{j k}\right)\right) \\
& +\partial_{j}\left(g q r\left(\partial q_{j} g_{k r}+\partial_{k} g_{q \gamma}-\partial r g_{k q}\right)\right) \\
& +g^{-1} * g^{-1} * \partial g * \partial g
\end{aligned}
$$

(we used the coordinate expressianfor

$$
\binom{k}{i j}
$$

$$
\begin{align*}
& =g q r\left(-\partial_{q} \partial_{j} g_{r k}-\partial q \partial_{k} g_{r_{j}}+\partial q \partial_{r} g_{j k}\right) \\
& +\operatorname{gqr}\left(\partial_{j} \partial q_{j} g_{k \Omega}+\partial_{j} \partial_{k} g_{q \gamma}-\partial j \partial_{\Omega} g_{k q}\right) \\
& +g^{-1} * g^{-1} * \partial g * \partial g
\end{align*}
$$

terms cancel
is the $\Delta\left(g_{j k}\right)$ term on contracting $q$ and $\Omega$ The remaining 3 terms can be coritter lie terms of partial derivatives of $\Gamma_{* g}$. e.g.

$$
\begin{aligned}
g g r\left(-\partial q \partial_{k} g_{r j}\right. & \left.+\frac{1}{2} \partial_{j} \partial_{k} g_{q r}\right) \\
& =-g q^{r r} \partial_{k}\left(\Gamma_{q r r}^{s} g_{s j}\right)
\end{aligned}
$$

as gr $\partial_{k}\left(\Gamma_{q r i}^{s} g_{s j}\right)$

$$
\begin{aligned}
& =-g g^{r} \partial_{k}\left(\frac{1}{2} g^{s l}\left(\partial_{q} g_{r l}+\partial_{r} g_{q l}-\partial_{l} g_{q r}\right)\right. \\
& \left.g_{s j}\right) \\
& =-g q_{r} \partial_{k}\left(\frac{1}{2}\left(\partial q g_{r j}+\partial_{r} g_{q j}-\partial_{j} g_{q r}\right)\right) \\
& =-g q r\left(\frac{1}{2}\left(\partial_{k} \partial_{q} g_{r j}+\partial_{k} \partial_{r} \partial_{q_{j} j}-\partial_{k} \partial_{j} g_{q_{l}}\right)\right) \\
& =-\partial k \partial \partial_{r} g_{r j}+\frac{1}{2} \partial_{k} \partial_{j} g_{q r}
\end{aligned}
$$

and the remaining term $g q r\left(-\partial_{j} \partial_{1} g_{k q}+\frac{1}{2} \partial_{k} \partial_{j} g_{q, 1}\right)$

$$
\dot{m} *=-g q r \partial_{j}\left(\Gamma_{q r}^{s} g_{s k}\right)
$$

OO (*) becomes

$$
\begin{gathered}
-2 R_{j k}=\Delta\left(g_{j k}\right)-\frac{g^{q \gamma} \partial_{k}\left(r_{g r}^{s} g_{s j}\right)-g q r \partial_{j}\left(r_{q r}^{s} g_{s k}\right)}{}+g^{-1 * g^{-1} * g * \partial g}
\end{gathered}
$$

The underlined $\qquad$ terms ane zero lie harmonic coordinates and :o

$$
-2 R_{j k}=\Delta\left(g_{j k}\right)+\overbrace{Q_{i j}\left(g^{-1}, \partial g\right)}^{g^{-1} * g^{-1} * \partial g * \partial g}
$$

