Also , recall that the ODE corresponding to the evolution of Rm \circ $\frac{d}{dt} \Pi = M^2 + M^{\#}$ which for the eigenvalues

$$\lambda(t) \ge \lambda(t) \ge \nu(t)$$
 satisfy
 $d_{t} \lambda = \lambda^{2} + \lambda \nu, \quad d_{t} \nu = \nu^{2} + \lambda \nu, \quad d_{t} \nu = \nu^{2} + \lambda \nu.$

Now we can come up w/ mony sets K which one invariant under parallel translation, closed and connex and which are preserved by the ODE.

$$\frac{d}{dt} \left((1 + \lambda l + \nu) \right)^{-1} \left[(\lambda + \lambda l)^{2} + (\lambda + \nu)^{2} + (\lambda + \nu)^{2} \right]$$

=
$$\frac{2}{3}$$
 (A1tA2tA3) ≥ 0
s. K is indeed presenred by K
= $\frac{1}{9}$ if a curvature - like densor is in
K at t = 0 then it remains so tot.
In n=3, the condition is precisely
R[0] $\geq c_0 = 0$ R[t] $\geq c_0$ which
we already knew. (lower bound of Ris
presenred)
(2) $K = \sum_{n=1}^{\infty} | \mathcal{V}(n) \geq 0 \sum_{n=1}^{\infty} s_{n+1} + | (1-s) \mathbb{N}_{2} | \sum_{n=1}^{\infty} s_{n+1} + (1-s) \mathbb{N}_{2} | \sum_{n=1}^{\infty} s_{n+1} + (1-s) \mathbb{N}_{2} | \sum_{n=1}^{\infty} s_{n+1} + (1-s) \mathbb{N}_{2} \in \mathbb{K} = \mathbb{P}$ convex.

now

 $\frac{dv}{dL} = v^2 + \lambda H \ge 0$ whenever ひろつ Infact is 22>0 then dry >0=D 2(f)>0. If v(o) = 0 and $\mu(o) > 0$ then still some thing holds. If 2(0)=0 and 1(0)=0 and 2(0)=0 then they all remain 0. If $\lambda(0) > 0$ there v(t) = u(t) = 0 and $\lambda(t) > 0$. In any case is preserved by the ODE. So Rey the max. principle, RM 20 is preserved along the Ricci flow.

(3) Let $K = \{M \mid \mathcal{M}(M) + \mathcal{M}(M) \geq 0 \}$ show that K is closed, convex and is preserved by the ODE. conclusion: - Rc >0 is presented already Knew. (4) (Ricci pinching & preserved) If $A(Rm) \leq C(M(Rm) + \omega(Rm))$ for $C \geq \frac{1}{2}$ then it remains so. $K = Sm \left[\lambda(m) \leq C(\mu(m) + \nu(m)) \right]$ for a genere $C \ge \frac{1}{2}$. if C = 1/2 then : $\lambda(M) \ge \frac{1}{2}(M+\nu)$ and $\lambda(M) \leq \frac{1}{2} (M+\nu)$ we, get $\lambda = \frac{1}{2} (\mu + \nu)$

 $Abo \qquad \lambda \ge \mu = 0 \qquad \frac{\lambda + \nu}{2} \ge \mu + \nu \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \\ = 0 \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\nu}{2} \ge \frac{\lambda}{2} \qquad \frac{\lambda + \nu}{2} \qquad \frac{\lambda + \nu}{2} \ge \lambda = 0 \qquad \frac{\lambda + \nu}{2} \ge \frac{\lambda}{2} \qquad \frac{\lambda + \nu}{2} \qquad \frac{\lambda + \nu}{2}$ 三日 ろニン=ル. : $\gamma(t) = \gamma(t) = \gamma(t) = \eta(t)$ JK is preserved by the ODE. So let C>1 and ALOZZMONZYO) then we have $M(0) + \mathcal{V}(0) \geq 0$. Because we already have $\lambda(0) \geq \frac{1}{2} (\mu(0) + \nu(0))$ So me can vener have DLOJ < C (M(0)+V(0)) w/ C > 1/2 ey M(0)+V(0) LO. now $\frac{d}{dt}(M+\nu) = M^2 + \nu^2 + \lambda(M+\nu)$ so either i) 2(0)=K(0)= X(0)=0

Here
$$\mathcal{V}(t) = \mathcal{U}(t) = \lambda(t) = 0$$

or
ii) $\mathcal{U}(0) + \mathcal{V}(0) > 0 = \mathcal{D} \frac{d}{dt} (\mathcal{U} + \mathcal{V}) > 0$
 $= \mathcal{D} (\mathcal{U} + \mathcal{V})(t) > 0 \quad \forall t > 0.$
case i) trivially satisfies the condition
that \mathcal{K} is preserved by the ODE.
so, we only look at case ii).
So we can take log
 $\frac{d}{dt} \log \left(\frac{\lambda}{\mathcal{U} + \mathcal{V}}\right) = \frac{1}{\lambda(\mathcal{V} + \mathcal{U})} \left(\frac{(2\mathcal{H} \mathcal{U}) \frac{d\lambda}{dt}}{dt} - \frac{\lambda}{dt} \frac{d}{dt}(\mathcal{U} + \mathcal{U})\right)$
 $= \frac{1}{\lambda(\mathcal{U} + \mathcal{V})} \left(\frac{(\mathcal{V} + \mathcal{U})(\lambda^2 + \mathcal{U} + \mathcal{U})}{-\lambda(\mathcal{U} + \mathcal{V})}\right) = \frac{\mathcal{U}^2(\mathcal{V} - \lambda) + \mathcal{V}^2(\mathcal{U} - \lambda)}{-\lambda(\mathcal{U} + \mathcal{V})} \leq 0$

MMFU)

 $\frac{\delta}{M(t)} \xrightarrow{\lambda(t)} \xrightarrow{\lambda(0)} \xrightarrow{\lambda(0)} \xrightarrow{\lambda(0)} \xrightarrow{\lambda(0)} \xrightarrow{\lambda(0)}$ Hence K is preserved by the ODE. to eg the initial eigenvalues of Rm have the pinching estimates then it is preserved. Note that we have $CRG \ge \lambda(Rm)g \ge \frac{1}{3}Rg$

So the above estimate in other words say that along the R.F. $Rc \ge ERg$ is preserved.

for some $E \leq \frac{1}{3}$. which we have already proved.

(Finching improves). Let $C_0 > O$, $C_1 \ge \frac{1}{2}$, $C_2 < o > ond \delta > 0$. ($\delta < 1$) ond let

$$K = \begin{cases} M \\ \lambda \leq C_1 (M+\lambda)_1 \\ \lambda = 2 \\ \lambda - 2 \\ \zeta_2 (\lambda + M+\lambda)_2 \\ \zeta_$$

 $\lambda - 22 - C_2(\lambda + pl + 2)^{1-8}$ is convex.

If $M \in K$ then $M(M) + \mathcal{V}(M) > 0$ by the first two inequalities. (if $M + \mathcal{V} \leq 0 = D$ $C_1(M + \mathcal{V}) \leq 0$

So note that
$$M + \lambda \leq 2\lambda \leq 2C_1 (M + \nu)$$

$$\frac{M^2}{\lambda + M + \nu} = \frac{M \cdot \mu}{\lambda + M + \nu} (M \geq \frac{M + \nu}{2}) \geq \frac{M (M + \nu)}{6 \lambda} \geq \frac{1}{6C_1} \mu \ell$$

and
$$\nu+\lambda-\lambda l \leq \lambda \leq C_{1}(\lambda+\nu) \leq 2C_{1}\lambda l$$

$$\therefore \frac{d}{dl} \log \left(\frac{\lambda-\lambda l}{(\lambda+\lambda l-\nu)^{1-8}}\right) \leq \frac{8}{1-8} (2C_{1}\lambda l) - \frac{1}{6C_{1}}\lambda l$$

$$So \frac{g}{l} = \frac{8}{1-8} \leq \frac{1}{12c_{1}^{2}} = 2 \frac{2C_{1}\lambda s}{1-8} \leq \frac{1}{6C_{1}}\lambda l$$
and we'll be done.

$$\sum_{n=1}^{\infty} \lambda - 2^{n} \leq C_{2} \left(\lambda + A + 2^{n}\right)^{1-8}$$

Exercise Prome that this is equivalent to $\frac{|Rc - \frac{1}{3}Rg|}{R} \leq CR^{-8}$ $\frac{|V_{1}|}{|V_{2}|}$

U -