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Problems

(1) Prove that the set
K = {M | µ(M) + ν(M) ≥ 0} (0.1)

with M a curvature-like tensor, ν being the smallest eigenvalue and µ being the middle
eignevalue, is preserved by the associated ODE. Conclude from this, using the maximum
principle for systems, that non-negative Ricci curvature is preserved along the Ricci flow in
dimension 3.

(2) Prove that the "Ricci pinching improves" estimate in dimension 3, i.e., existence of C < ∞
and δ such that λ(M)− ν(M)− C(λ+ µ+ ν)1−δ ≤ 0 implies that∣∣Ric−1
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and thus in regions where R >> 0, the manifold is almost Einstein.

(3) Prove the following evolution along the Ricci flow in dimension 3:
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(4) First prove that in dimension 3,
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inequality and the contracted second Bianchi identity, prove that
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Question to think: In the proof of the "Ricci pinching estimate" λ(Rm) ≤ C(µ(Rm)+ ν(Rm)) and
the "Ricci pinching improves" λ−ν ≤ C(λ+µ+ν)1−δ, where did we use the fact that the initial Ricci
curvature of M3 is strictly positive (and not just non-negative)?
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