Ricci Flow — Problem Set 3
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Problem 1

a) First I show that g can be viewed as a steady Ricci soliton: This means I must find a
vector field X such that -2 Ric(g) = Zxg. As Ric(g) = 0 one obvious solution is X = 0.
However, other solutions exist as well: For every parallel vector field X one has

Zxg(v,w) = X(g(v,w)) — g(Zxv, w) — g(v, Lxw)
= Vxg(v, w) + g(Vxov, w) — g(v, Vxw) — g(Zxv, w) — g(v, Lxw)
=0+9(V,X,w)+9(v,V,X)
=0

where I used that V is torsion-free.

Now I show that g can be regarded as an expanding gradient Ricci soliton with A = 1
and f(x) = %|x|2. That is, | must show that —R;; = V;V, f +Ag;; where, due to the flatness
of the Euclidean metric, R;; = 0. This is a simple computation:

1
ViVif(x) = vi(aji(xf +oo 4 x2)
= Vi(x;))
= 51] = 91]

b) Suppose we have a self-similar solution

g(t) = A(1)$; (90)-

Without loss of generality, assume that A(0) = 1 and ¢, = idy. Since g(t) is a solution
to the Ricci flow, we get

dg(t) ,
—2Rc(go) = ga—t = A(0)go + Ly(0)90
t=0

and hence
—2Rc(go) = 2Ago + Lxgo

with A = %/1’(0) and X = Y(0). Here Y (t) is the vector field generating ¢;.

*Some parts are written by Shubham Dwivedi.



Conversely, suppose we have a Ricci soliton structure, i.e., —2Rcy = Lx(go) + 2Ago.
Let

X(x)

At) =1+2At, Yi(x) = 10

and consider g(t) = A(t)$;(go) with ¢; the one-parameter family of diffeomorphisms
generated by Y;. We want to show that g(¢) is a solution ot the Ricci flow. We compute

g (t) = ' (t)¢; (go) + A()¢; (Ly,go)
= 2A¢; (go) + ¢; (Lx70)
= ¢; (2490 + Lxgo)
= ¢, (—2Rc(go))
= —2Rc(A(t)¢; (90))
= —2Rc(g(t)).

Problem 2

Suppose ¢(t) is a gradient Ricci soliton, that is, =R;; = V;V,f + Ag;; where A € R and
f e C®(M).

a) By tracing:
—Agij = ViVif + R
— _Agii = Rii + V,Vif
— —nA =R+ Af.
b) One has
0= VJ‘O = Vj(Rij + Viij"'/lgij) = VJ‘R,‘]' + VjV,'ij.
Apply the twice contracted second Bianchi identity (PSet 1):
1
VjR,'j = —ViR
2
And

ViViVif =ViViVif = Rjijm Vi f
= V,Af + Rimef

@ Vi(nh = B) + RinVnf

= —V,‘R + Rimef.

Combining all results:

1
0= VJRIJ + VJVlef = _EViR + R,-mef.



c) Using that R;; = —=V,;V;f — Ag;;, (b) becomes

0= ViR = 2RinVpf
= ViR+ (2V;Vf + 2Agim) Vi f
=ViR+ ViV fVouf + Vi f ViViuf + 2AGim Vo f
= ViR+ V;|Vf|* + 2AV;f
= Vi(R+|Vf|* + 2Af).

Hence R + |Vf|? — 2Af is constant. O

Aside: I mentioned the following theorem of Perelman in the problem sessions.
Theorem(Perelman ’03) Every compact Ricci soliton is a gradient Ricci soliton.

The proof of this theorem is beyond the scope of the lectures. If you are interested
then you can have a look at Perelman’s W—functional and his proof of existence of
minimization of the functional. The key ingredient is a logarithmic Sobolev estimate
which we won’t see in this course. However, there do exist noncompact Ricci solitons
which are not gradient.

Also, by using the maximum principle (which we’ll learn next week) and part (a) and
(c) of Prob. 2, we can prove the following theorem. Note that for us, steady solitons means
A = 0 and expanding soliton means A < 0 (due to the sign mistake in the assignment
problem as we discussed)

Theorem. Every steady or expanding compact Ricci soliton has the scalar curvature
R constant and in fact equal to nA. Thus, from part (a), we get that Af = 0 and hence f
is a constant. Thus the Ricci soliton in this case is an Einstein metric.



