Introduction to the Ricci Flow
Dr. Shubham Dwivedi

Humboldt-Universität zu Berlin
Summer Semester 2022

Problem Set 1
 Due date: 02.05.2022

Problems

(1) Let M^{n} be a manifold. Recall the lemma about the induced connection on all tensor bundles from a connection ∇ on the tangent bundle (Lemma on pg. 15 and 16 of the lecture notes). Use the three properties mentioned in the lemma to prove the following:
(a) If α is a covector field and Y is a vector field then

$$
\begin{equation*}
\nabla_{X}\langle\alpha, Y\rangle=\left\langle\nabla_{X} \alpha, y\right\rangle+\left\langle\alpha, \nabla_{X} Y\right\rangle \tag{0.1}
\end{equation*}
$$

where \langle,$\rangle is the natural pairing between a covector and a vector field.$
(b) If ω is a 1 -form then the coordinate expression of $\nabla_{X} \omega$ is given by

$$
\begin{equation*}
\nabla_{X} \omega=\left(X^{i} \partial_{i} \omega_{k}-X^{i} \omega_{j} \Gamma_{i k}^{j}\right) d x^{k} \tag{0.2}
\end{equation*}
$$

(2) Find the expression of the $(3,1)$ Riemann curvature tensor in coordinates in terms of the Christoffel symbols. We will use the expression when we will calculate the variation formulas under the Ricci flow. (Hint: Proceed in the same as we obtained a formula for the Christoffel symbols in terms of the derivatives of the components of the metric.)
(3) This question looks a bit longer because here we introduce the Ricci curvature and the Scalar curvature and prove some properties about them. Recall the following from linear algebra: If $(V,\langle\rangle$,$) is an inner product space with basis \left\{e_{1}, \ldots, e_{n}\right\}$ and $A: V \rightarrow A$ is a linear map then $A e_{i}=A_{i}^{j} e_{j}$ and $\operatorname{tr}(A)=A_{i}^{i} \in \mathbb{R}$. Note that

$$
g^{i j}\left\langle A e_{i}, e_{j}\right\rangle=g^{i j}\left\langle A_{i}^{l} e_{l}, e_{j}\right\rangle=g^{i j} A_{i}^{l} g_{l j}=A_{i}^{i}=\operatorname{tr}(A)
$$

and thus $\operatorname{tr}(A)=g^{i j}\left\langle A e_{i}, e_{j}\right\rangle$.
If B is a bilinear form then we define $\operatorname{tr}(B)=g^{i j} B_{i j}$.
Let (M, g) be a Riemannian manifold, $p \in M$ and fix $X_{p}, Y_{p} \in T_{p} M$. Define $A_{p}: T_{p} M \rightarrow T_{p} M$ by $A_{p}\left(Z_{p}\right)=R\left(Z_{p}, X_{p}\right) Y_{p}$, where R is the Riemann curvature tensor. Then from the above discussion we see that if $\left\{e_{1}, \ldots, e_{n}\right\}$ is any basis of $T_{p} M$ then

$$
\begin{aligned}
\operatorname{tr}\left(A_{p}\right) & =g\left(A_{p} e_{i}, e_{j}\right) g_{p}^{i j} \\
& =g\left(R\left(e_{i}, X_{p}\right) Y_{p}, e_{j}\right) g^{i j} \\
& =R\left(e_{i}, X_{p}, Y_{p}, e_{j}\right) g^{i j}
\end{aligned}
$$

We can now make the following definition
Definition The Ricci tensor of g is the (2,0)-tensor Ric defined by

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=g^{i j} R\left(e_{i}, X, Y, e_{j}\right) \tag{0.3}
\end{equation*}
$$

In local coordinates,

$$
\begin{equation*}
\mathrm{Ric}=R_{j k} d x^{j} \otimes d x^{k} \quad \text { with } \quad R_{j k}=R_{i j k l} g^{i l} \tag{0.4}
\end{equation*}
$$

and thus Ric is obtained from the $(4,0)$-Riemann tensor by tracing on the first and the last index.
Definition The scalar curvature R of g is the trace of the Ricci tensor and is a function on M. That is, $\mathrm{R}=\operatorname{tr}_{g}($ Ric $)=g^{i j} R_{i j}$.
Prove the following:
(a) Ric is a symmetric (2,0)-tensor.
(b) $\nabla_{i} R_{i j m k}=\nabla_{k} R_{j m}-\nabla_{m} R_{j k}$.
(c) $\nabla_{i} R_{i j}=\frac{1}{2} \nabla_{j} \mathrm{R}$ which in invariant form reads as $\operatorname{div} \mathrm{Ric}=\frac{1}{2} d \mathrm{R}$ where div is the divergence of a tensor.
(4) Let g be a Riemannian metric on a manifold M. Let $c>0$ be a constant. Then $c g$ is again a Riemannian metric on M as is said to be a rescaled metric. Show that as a $(3,1)$ tensor $R_{(3,1)}(\mathrm{cg})=R_{(3,1)}(g)$. Find the scalings of the (4,0)-Riemann curvature tensor, the Ricci curvature and the Scalar curvature. (Hint: What can you say about the Levi-Civita connection $\nabla^{c g}$ in terms of ∇^{g} ?)

