Problem Set 7
 Due date: 12.07.2023

Problems

(1) Calculate the second fundamental form and the mean curvature of the S_{r}^{n} of radius r with the round metric when viewed as a submanifold of \mathbb{R}^{n+1}.
(2) Let $X: M^{n} \rightarrow \mathbb{R}^{n+1}$ be a compact immersed hypersurface. Prove that

$$
\operatorname{Area}(M)=-\frac{1}{n} \int_{M}\langle X, \vec{H}\rangle d \mu
$$

(3) Consider an embedded submanifold $X: M^{n} \rightarrow \mathbb{R}^{n+1}$.
(a) If $p \in M$ is an umbilic point, i.e., $A_{p}=\alpha_{p} g_{p}$, prove that $\alpha_{p}=\frac{H(p)}{n}$.
(b) Suppose that M is totally umbilic. Prove that $\nabla A=0$.
(c) Deduce from the above that connected, totally umbilic hypersurfaces of \mathbb{R}^{n+1} are open subsets of hyperplanes or round spheres.
(4) Use the Simons's inequality to prove the following result due to Choi-Schoen ${ }^{1}$

There exist $\epsilon, \rho>0$ such that if $r_{0}<\rho, M^{2} \subset \mathbb{R}^{3}$ is a compact minimal surface (so $H=0$) with $\partial M \subset \partial B_{r_{0}}(x), 0<\delta \leq 1$ and

$$
\int_{B_{r_{0}} \cap M}|A|^{2}<\delta \epsilon
$$

then for all $0<\sigma \leq r_{0}$ and $y \in B_{r_{0}-\sigma}(x)$,

$$
\sigma^{2}|A|^{2}(y) \leq \delta
$$

Remark: Try to prove this by a contradiction argument. You might need to use the mean value inequality for minimal surfaces: Suppose $M^{2} \subset \mathbb{R}^{3}$ is minimal with $x_{0} \in M^{2}$ and $s>0$ satisfying $B_{s}\left(x_{0}\right) \cap \partial M^{2}=\emptyset$. If f is a nonnegative function on M^{2} satisfying $\Delta f \geq-\lambda s^{-2} f$ then

$$
f\left(x_{0}\right) \leq e^{\frac{\lambda}{2}} \frac{\int_{B_{s}\left(x_{0}\right) \cap M^{2}} f}{\operatorname{Vol}\left(B_{s} \subset \mathbb{R}^{3}\right)}
$$

What should be the f in above situation?

[^0]
[^0]: ${ }^{1}$ H.I. Choi and R. Schoen, The space of minimal embeddings of a surface into a three manifold of positive Ricci curvature, Invent. Math. 81 (1985) 387-394.

