Extrinsic Geometric Flows Dr. Shubham Dwivedi Humboldt-Universität zu Berlin Summer Semester 2023

Problem Set 5 Due date: 14.06.2023

Problems

(1) Let X(t) be a convex solution to the CSF. Recall the normal angle $\theta(t) : M^1 \to \mathbb{R}/2\pi\mathbb{Z}$ for every t. Then $\kappa \circ \theta^{-1}$ can be considered as a function on $\mathbb{R}/2\pi\mathbb{Z} \times [0,T)$. Suppose $\frac{\partial}{\partial t}$ denotes the time-derivative in original coordinates (u,t) and $\frac{\partial}{\partial \tau}$ denotes the time-derivative in (θ,t) coordinate. Prove that

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial \tau} + \kappa^{-1} \kappa_s \frac{\partial}{\partial s}.$$

- (2) In the same situation as Prob. 1 and viewing the curvature κ as a function of (θ, t) , find the expression for κ_{τ} .
- (3) Prove that if $X_c(u,t) = cX(u,c^{-2}t)$ is a resclaed solution to the CSF then $\kappa_c(\tau) = c^{-1}\kappa(c^{-2}\tau)$ is the soution to the equation you derive in Prob. 2. Note that the rescaling is a "parabolic rescaling", i.e., time scales like distance².
- (4) Give a convex solution to the CSF, consider the quantity

$$Q = \kappa (\kappa_{\theta\theta} + \kappa).$$

Prove that Q = 0 on the Grim reaper and prove that $Q_{\tau} = \kappa^2 Q_{\theta\theta} + 2\kappa \kappa_{\theta} Q_{\theta} + 2Q^2$.

(5) Using the maximum principle, prove that on any immersed, convex solution $X: S^1 \times [\alpha, T) \to \mathbb{R}^2$

$$Q + \frac{1}{2(t-\alpha)} \ge 0$$

for $t \in [\alpha, T)$. This is the Harnack inequality for convex solutions to CSF.