Problem Set 5
 Due date: 14.06.2023

Problems

(1) Let $X(t)$ be a convex solution to the CSF. Recall the normal angle $\theta(t): M^{1} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ for every t. Then $\kappa \circ \theta^{-1}$ can be considered as a function on $\mathbb{R} / 2 \pi \mathbb{Z} \times[0, T)$. Suppose $\frac{\partial}{\partial t}$ denotes the time-derivative in original coordinates (u, t) and $\frac{\partial}{\partial \tau}$ denotes the time-derivative in (θ, t) coordinate. Prove that

$$
\frac{\partial}{\partial t}=\frac{\partial}{\partial \tau}+\kappa^{-1} \kappa_{s} \frac{\partial}{\partial s}
$$

(2) In the same situation as Prob. 1 and viewing the curvature κ as a function of (θ, t), find the expression for κ_{τ}.
(3) Prove that if $X_{c}(u, t)=c X\left(u, c^{-2} t\right)$ is a resclaed solution to the CSF then $\kappa_{c}(\tau)=c^{-1} \kappa\left(c^{-2} \tau\right)$ is the soution to the equation you derive in Prob. 2. Note that the rescaling is a "parabolic rescaling", i.e., time scales like distance ${ }^{2}$.
(4) Give a convex solution to the CSF, consider the quantity

$$
Q=\kappa\left(\kappa_{\theta \theta}+\kappa\right)
$$

Prove that $Q=0$ on the Grim reaper and prove that $Q_{\tau}=\kappa^{2} Q_{\theta \theta}+2 \kappa \kappa_{\theta} Q_{\theta}+2 Q^{2}$.
(5) Usng the maximum principle, prove that on any immersed, convex solution $X: S^{1} \times[\alpha, T) \rightarrow \mathbb{R}^{2}$

$$
Q+\frac{1}{2(t-\alpha)} \geq 0
$$

for $t \in[\alpha, T)$. This is the Harnack inequality for convex solutions to CSF.

