Extrinsic Geometric Flows
Dr. Shubham Dwivedi

Humboldt-Universität zu Berlin
Summer Semester 2023

Problem Set 4
 Due date: 24.05.2023

Problems

(1) Find a family of diffeomorphisms $y:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(-\infty, \infty) \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that the parametrization

$$
(y, t) \mapsto(x(y, t), t-\log \cos (x(y, t)))
$$

of the Grim Reaper satisfies the parametrized curve shortening flow equation.
(2) Show that the paperclip given implicitly by $\cosh y=e^{-t} \cos x$, and the hairclip given implicitly by $\sinh y=e^{-t} \cos x$ are solutions to the curve shortening flow.
(3) Recall the support function σ from Pset3 (4). Assume that for any embedded closed convex curve, we have the inequality

$$
\int_{M^{1}} \sigma^{2} d s \leq \frac{L A}{\pi}
$$

where L is the length of the curve and A is the area of the interior. Prove that

$$
\int_{M^{1}} \kappa^{2} d s \geq \frac{\pi L}{A}
$$

(4) Prove that for any embedded closed convex curve evolving by curve shortening flow, the isoperimetric ratio $\frac{L^{2}}{A}$ is monotonically decreasing in time.

