Extrinsic Geometric Flows Dr. Shubham Dwivedi Humboldt-Universität zu Berlin Summer Semester 2023

Problem Set 3 Due date: 17.05.2023

Problems

(1) Let X(t) be a CSF on $[0, T_{max})$. Suppose $\kappa(u, t) \leq K \forall (u, t) \in M^1 \times [0, T_{max})$. Prove the first order estimate from the lecture: If X' denotes the derivative with respect to some parameter x (for instance the arc length parameter s at time 0) then $\forall (u, t) \in M^1 \times [0, T_{max})$ we have

$$e^{-K^2 T_{max}} \le |X'(u,t)| \le C$$

where the constant $C < \infty$ depends on |X'(u, 0)|.

- (2) In the same situation as Prob. 1, compute the expression $N \cdot X^{(4)}$ from the lecture.
- (3) Suppose the map X(x,t) evolves by

$$\frac{\partial X}{\partial t}(u,t) = -\phi(u,t)N(u,t)$$

for some smooth function $\phi: M^1 \times [0,T) \to \mathbb{R}$. Prove that

$$\frac{\partial}{\partial t} \left(\frac{\partial}{\partial s} \right) = \phi \kappa \frac{\partial}{\partial s}.$$

(4) Let $X: S^1 \to \mathbb{R}^2$ be an immersed planar curve. The support function $\sigma: S^1 \to \mathbb{R}$ is defined as

$$\sigma(u) = \langle X(u), N(u) \rangle.$$

- (a) Calculate $\int_{S^1} \sigma \kappa ds$.
- (b) Prove that under CSF the evolution of the support function is

$$\sigma_t = \sigma_{ss} + \kappa^2 \sigma - 2\kappa.$$