Extrinsic Geometric Flows Dr. Shubham Dwivedi Humboldt-Universität zu Berlin Summer Semester 2023

Problem Set 2 Due date: 10.05.2023

Problems

(1) For $u: T^n \times [0,T) \to \mathbb{R}$, a positive solution to the heat equation, we define the **Nash entropy** of u by

$$N(u) = -\int_M u \log u d\mu.$$

Prove that the entropy is nondecreasing in time.

(2) Let u be a solution to the heat equation and let ϕ be a solution to the L^2 -adjoint heat equation, i.e.,

$$(\partial_t + \Delta \phi) = 0.$$

One can define the *weighted volume* of the space as $\phi d\mu$. Prove that

- (a) the "mass" of u, $\int_{T^n} u\phi d\mu$ is constant with respect to the weighted volume.
- (b) Prove that the L^2 -norm of u with respect to the weighted volume is strictly decreasing unless u is a constant function.
- (3) We prove some results about smooth curves.
 - (a) Prove Wirtinger's inequality: Let $f : [0, \pi] \to \mathbb{R}$ be a smooth function with $f(0) = f(\pi) = 0$. Then

$$\int_{0}^{\pi} (f_t)^2 dt \ge \int_{0}^{\pi} f^2(t) dt$$

with equality if and only if $f(t) = C \sin t$ with C being a constant.

(b) Using the Wirtinger's inequality, prove the following result know as the **Isoperimetric** inequality.: Let γ be a simple closed curve and let $L(\gamma)$ be the length of γ and $A(\gamma)$ be the area enclosed by γ . Prove that

$$L^2(\gamma) \ge 4\pi A(\gamma)$$

with equality if and only if γ is a circle.

(4) For $k \in \mathbb{N}$ and $r \in (0,1)$, consider the curve $X_{k,r}(u) = \left(-\cos u + kr\cos \frac{u}{k}, \sin u - kr\sin \frac{u}{k}\right)$. Compute the curvature of $X_{k,r}$.